114 research outputs found

    An ontology for managing network services quality

    Get PDF
    The evolution of IP networks to a service-oriented paradigm poses new challenges to service providers regarding the management and auditing of network services. The upward trend in ubiquity, heterogeneity and virtualization of network services and resources demands for a formal and systematic approach to network management tasks. In this context, the semantic characterization and modeling of services provided to users is a key component to sustain autonomic service management, service negotiation and configuration. The semantic and formal description of services and resources is also relevant to assist paradigms such as cloud computing, where a large diversity of resources have to be described and managed in a highly dynamic way. This paper defines an ontology for multiservice IP networks targeting multiple service management goals, namely: (i) to foster client and service provider interoperability; (ii) to manage network service contracts, promoting the dynamic negotiation between parties; (iii) to access and query SLA/SLSs data on a individual or aggregated basis to assist service provisioning in the network; and (iv) to sustain service monitoring and auditing. A ServiceModel API is provided to take full advantage of the proposed semantic model, allowing Service Management Platforms to access the ontological contents. This ontological development takes advantage of SWRL to discover new knowledge, enriching the possibilities of systems described using this support.Fundação para a Ciência e a Tecnologia (FCT

    The role of admission control in assuring multiple services quality

    Get PDF
    Considering that network overprovisioning by itself is not always an attainable and everlasting solution, Admission Control (AC) mechanisms are recommended to keep network load controlled and assure the required service quality levels. This article debates the role of AC in multiservice IP networks, providing an overview and discussion of current and representative AC approaches, highlighting their main characteristics, pros and cons regarding the management of network services quality. In this debate, particular emphasis is given to an enhanced monitoring-based AC proposal for assuring multiple service levels in multiclass networks.Centro de Ciências e Tecnologias da Computação do Departamento de Informática da Universidade do Minho (CCTC

    Quality-of-service management in IP networks

    Get PDF
    Quality of Service (QoS) in Internet Protocol (IF) Networks has been the subject of active research over the past two decades. Integrated Services (IntServ) and Differentiated Services (DiffServ) QoS architectures have emerged as proposed standards for resource allocation in IF Networks. These two QoS architectures support the need for multiple traffic queuing systems to allow for resource partitioning for heterogeneous applications making use of the networks. There have been a number of specifications or proposals for the number of traffic queuing classes (Class of Service (CoS)) that will support integrated services in IF Networks, but none has provided verification in the form of analytical or empirical investigation to prove that its specification or proposal will be optimum. Despite the existence of the two standard QoS architectures and the large volume of research work that has been carried out on IF QoS, its deployment still remains elusive in the Internet. This is not unconnected with the complexities associated with some aspects of the standard QoS architectures. [Continues.

    Multimedia courseware for interactive teaching and learning: students’ needs and perspectives

    Get PDF
    Education faces many new challenges in meeting the demands of teaching and learning for the 21st century. One of the new challenges is to integrate ICT (Information and communication technologies) in teaching and learning as a means of delivering alternative teaching. Multimedia technology, for example, has the potential to transform a traditional classroom into an unlimited imaginary world. This paper report on development and evaluation of a multimedia courseware for Design and Technology (RBT). An interactive CD was developed using the Adobe Flash CS6 software. Alpha and Beta testing have been carried out in the development process. 6 experts were assigned to evaluate the functionality of the interactive CD. In order to identify the usability of interactive CD, 103 respondents were involved in the survey by filling four-point Likert scaled questionnaire. The findings show that, the level of interactive CD usability is at a high level. Based on this study, there are positive effects that we can see based on the use of multimedia elements in the education system. The meaningful benefits of using multimedia elements for learning include the presentation of various learning styles. The presentation of information usually integrates multimedia elements such as text, graphics, audio and video

    A service-oriented admission control strategy for class-based IP networks

    Get PDF
    The clear trend toward the integration of current and emerging applications and services in the Internet launches new demands on service deployment and management. Distributed service-oriented traffic control mechanisms, operating with minimum impact on network performance, assume a crucial role as regards controlling services quality and network resources transparently and efficiently. In this paper, we describe and specify a lightweight distributed admission control (AC) model based on per-class monitoring feedback for ensuring the quality of distinct service levels in multiclass and multidomain environments. The model design, covering explicit and implicit AC, exhibits relevant properties that allow managing quality of service (QoS) and service-level specifications (SLSs) in multiservice IP networks in a flexible and scalable manner. These properties, stemming from the way service-dependent AC and on-line service performance monitoring are proposed and articulated in the model’s architecture and operation, allow a self-adaptive service and resource management, while abstracting from network core complexity and heterogeneity. A proof of concept is provided to illustrate the AC criteria ability in satisfying multiple service class commitments efficiently. The obtained results show that the self-adaptive behavior inherent to on-line measurement-based service management, combined with the established AC rules, is effective in controlling each class QoS and SLS commitments consistently

    Toward scalable management of multiple service levels in IP networks

    Get PDF
    This paper analyzes and discusses the role of a distributed and simple admission control (AC) model in achieving scalable management of multiple network service levels. The model design, covering explicit and implicit AC, exhibits relevant properties which allow managing QoS and SLSs in multiservice IP networks in a flexible and scalable manner. These properties stem from the way service-dependent AC and on-line service performance monitoring are proposed and articulated in the model's architecture and operation. The scalability debate, carried out at these two levels, highlights key steps toward performing self-adaptive service-oriented AC and low overhead multiservice monitoring. The performance evaluation results, illustrating the role and relevance of the defined AC rules, show that QoS and SLSs requirements can be efficiently satisfied or bounded, proving that the simplicity, flexibility and self-adaptability of the model can be explored to manage multiple service guarantees successfully

    Managing QoS in multiservice data networks

    Get PDF
    Abstract: Next-generation networks require organized methods to offer Quality of Service (QoS) guaranteed IP network connectivity. This study suggests a solution for combined control of routing and flow problems, namely an algorithm based on flow deterministic network models. The algorithm solves the problem by identifying optimal routes and triggering the flow control law only for those paths. This experiment aims to assess how QoS and MPLS traffic engineering (TE) can advance Internet performance. It also aims to ascertain avenues for Internet improvement and to devise innovative mechanisms to ensure traffic engineering provision, and Class-of-Service (CoS) features in next-generation networks. The performances of the algorithm were evaluated on a fully connected six-node network, the data for which were extracted from a realistic network

    Delay analysis for wireless applications using a multiservice multiqueue processor sharing model

    Get PDF
    The ongoing development of wireless networks supporting multimedia applications requires service providers to efficiently deliver complex Quality of Service (QoS) requirements. The wide range of new applications in these networks significantly increases the difficulty of network design and dimensioning to meet QoS requirements. Medium Access Control (MAC) protocols affect QoS achieved by wireless networks. Research on analysis and performance evaluation is important for the efficient protocol design. As wireless networks feature scarce resources that are simultaneously shared by all users, processor sharing (PS) models were proposed for modelling resource sharing mechanisms in such systems. In this thesis, multi-priority MAC protocols are proposed for handling the various service traffic types. Then, an investigation of multiservice multiqueue PS models is undertaken to analyse the delay for some recently proposed wireless applications. We start with an introduction to MAC protocols for wireless networks which are specified in IEEE standards and then review scheduling algorithms which were proposed to work with the underlying MAC protocols to cooperatively achieve QoS goals. An overview of the relevant literature is given on PS models for performance analysis and evaluation of scheduling algorithms. We propose a multiservice multiqueue PS model using a scheduling scheme in multimedia wireless networks with a comprehensive description of the analytical solution. Firstly, we describe the existing multiqueue processor sharing (MPS) model, which uses a fixed service quantum at each queue, and correct a subtle incongruity in previous solutions presented in the literature. Secondly, a new scheduling framework is proposed to extend the previous MPS model to a general case. This newly proposed analytical approach is based on the idea that the service quantum arranged by a MAC scheduling controller to service data units can be priority-based. We obtain a closed-form expression for the mean delay of each service class in this model. In summary, our new approach simplifies MAC protocols for multimedia applications into an analytical model that includes more complex and realistic traffic models without compromising details of the protocol and significantly reduces the number of MAC headers, thus the overall average delay will be decreased. In response to using the studied multiservice multiqueue PS models, we apply the MPS model to two wireless applications: Push to Talk (PTT) service over GPRS/GSM networks and the Worldwide Interoperability for Microwave Access (WiMAX) networks. We investigate the uplink delay of PTT over traditional GPRS/GSM networks and the uplink delay for WiMAX Subscriber Station scheduler under a priority-based fair scheduling. MAC structures capable of supporting dynamically varying traffic are studied for the networks, especially, with the consideration of implementation issues. The model provides useful insights into the dynamic performance behaviours of GPRS/GSM and WiMAX networks with respect to various system parameters and comprehensive traffic conditions. We then evaluate the model under some different practical traffic scenarios. Through modelling of the operation of wireless access systems, under a variety of multimedia traffic, our analytical approaches provide practical analysis guidelines for wireless network dimensioning
    corecore