53 research outputs found

    Investigation of Nonlinear Pupil Dynamics by Recurrence Quantification Analysis

    Get PDF
    Pupil is controlled by the autonomous nervous system(ANS). It shows complexmovements and changes of size even in conditions of constant stimulation. The possibility of extracting information on ANS by processing data recorded during a short experiment using a low cost system for pupil investigation is studied. Moreover, the significance of nonlinear information contained in the pupillogram is investigated. We examined 13 healthy subjects in different stationary conditions, considering habitual dental occlusion (HDO) as a weak stimulation of the ANS with respect to the maintenance of the rest position (RP) of the jaw. Images of pupil captured by infrared cameras were processed to estimate position and size on each frame. From such time series, we extracted linear indexes (e.g., average size, average displacement, and spectral parameters) and nonlinear information using recurrence quantification analysis (RQA). Data were classified using multilayer perceptrons and support vector machines trained using different sets of input indexes: the best performance in classification was obtained including nonlinear indexes in the input features. These results indicate that RQA nonlinear indexes provide additional information on pupil dynamics with respect to linear descriptors, allowing the discrimination of even a slight stimulation of the ANS. Their use in the investigation of pathology is suggeste

    Self-Organized Criticality as a Neurodynamical Correlate of Consciousness: A neurophysiological approach to measure states of consciousness based on EEG-complexity features

    Get PDF
    Background and Objectives This thesis was based on the hypothesis that the physics-derived theoretical framework of self-organized criticality can be applied to the neuronal dynamics of the human brain. From a consciousness science perspective, this is especially appealing as critical brain dynamics imply a vicinity a phase transition, which is associated with optimized information processing functions as well as the largest repertoire of configurations that a system explores throughout its temporal evolution. Hence, self-organised criticality could serve as a neurodynamical correlate for consciousness, which provides the possibility of deriving empirically testable neurophysiological indices suitable to characterise and quantify states of consciousness. The purpose of this work was to experimentally examine the feasibility of the self-organized criticality theory as a correlate for states of consciousness. Therefore, it was aimed at answering the following research questions based on the analysis of three 64 channel EEG datasets: (i) Can signatures of self-organized criticality be found on the level of the EEG in terms of scale-free distribution of neuronal avalanches and the presence of long-range temporal correlations (LRTC) in neuronal oscillations? (ii) Are criticality features suitable to differentiate state of consciousness in the spectrum of wakefulness? (iii) Can the neuronal dynamics be shifted towards the critical point of a phase transition associated with optimized information processing function by mind-body interventions? (iv) Can an explicit relationship to other nonlinear complexity features and power spectral density parameter be identified? (v) Do EEG-based criticality features reflect individual temperament traits? Material and Methods (1): Re-analysis: Thirty participants highly proficient in meditation (mean age 47 years, 11 females/19 males, meditation experience of at least 5 years practice or more than 1000 h of total meditation time) were measured with 64-channel EEG during one session consisting of a task-free baseline resting, a reading condition and three meditation conditions, namely thoughtless emptiness, presence monitoring and focused attention. (2): 64-channel EEG was recorded from 34 participants (mean age 36.0 ±13.4 years, 24 females/ 10 males) before, during and after a professional singing bowl massage. Further, psychometric data was assessed including absorption capacity defined as the individual’s capacity for engaging attentional resources in sensory and imaginative experiences measured by the Tellegen-Absorption Scale (TAS-D), subjective changes in in body sensation, emotional state, and mental state (CSP-14) as well as the phenomenology of consciousness (PCI-K). (3): Electrophysiological data (64 channels of EEG, EOG, ECG, skin conductance, and respiration) was recorded from 116 participants (mean age 40.0 ±13.4 years, 83 females/ 33 males) – in collaboration with the Institute of Psychology, Bundeswehr University Munich - during a task-free baseline resting state. The individual level of sensory processing sensitivity was assessed using the High Sensitive Person Scale (HSPS-G). The datasets were analysed applying analytical tools from self-organized criticality theory (detrended fluctuation analysis, neuronal avalanche analysis), nonlinear complexity algorithms (multiscale entropy, Higuchi’s fractal dimension) and power spectral density. In study 1 and 2, task conditions were contrasted, and effect sizes were compared using a paired two-tailed t-test calculated across participants, and features. T-values were corrected for multiple testing using false discovery rate. To calculate correlations between the EEG features, Spearman’s rank correlation was applied after determining that the distribution was not appropriate for parametric testing by the Shapiro-Wilk test. In addition, in study 1, a discrimination analysis was carried out to determine the classification performance of the EEG features. Here, partial least squares regression and receiver operating characteristics analysis was applied. To determine whether the EEG features reflect individual temperament traits, the individual level of absorption capacity (study 2) and sensory processing sensitivity (study 3) was correlated with the EEG features using Spearman’s rank correlation. Results Signatures of self-organized criticality in the form of scale-free distribution of neuronal avalanches and long-range temporal correlations (LRTCs) in the amplitude of neural oscillations were observed in three distinct EEG-datasets. EEG criticality as well as complexity features were suitable to characterise distinct states of consciousness. In study 1, compared to the task-free resting condition, all three meditative states revealed significantly reduced long-range temporal correlation with moderate effect sizes (presence monitoring: d= -0.49, p<.001; thoughtless emptiness: d= -0.37, p<.001; and focused attention: d= -0.28, p=.003). The critical exponent was suitable to differentiate between focused attention and presence monitoring (d= -0.32, p=.02). Further, in study 2, the criticality features significantly changed during the course of the experiment, whereby values indicated a shift towards the critical regime during the sound condition. Both analyses of the first and second dataset revealed that the critical exponent was significantly negatively correlated with the sample entropy, the scaling exponent resulting from the DFA denoting the amount of long-range temporal correlations as well as Higuchi’s fractal dimension in each condition, respectively. In addition, the critical scaling exponent was found to be significantly negatively correlated with the trait absorption (Spearman's ρ= -0.39, p= .007), whereas an association between critical dynamics and the level of sensory processing sensitivity could not be verified (study 3). Conclusion The findings of this thesis suggest that neuronal dynamics are governed by the phenomena of self-organized criticality. EEG-based criticality features were shown to be sensitive to detect experimentally induced alterations in the state of consciousness. Further, an explicit relationship with nonlinear measures determining the degree of neuronal complexity was identified. Thus, self-organized criticality seems feasible as a neurodynamical correlate for consciousness with the potential to quantify and characterize states of consciousness. Its agreement with the current most influencing theories in the field of consciousness research is discussed

    Etude expérimentale des dynamiques temporelles du comportement normal et pathologique chez le rat et la souris

    Get PDF
    155 p.Modern neuroscience highlights the need for designing sophisticated behavioral readout of internal cognitive states. From a thorough analysis of classical behavioral test, my results supports the hypothesis that sensory ypersensitivity might be the cause of other behavioural deficits, and confirm the potassium channel BKCa as a potentially relevant molecular target for the development of drug medication against Fragile X Syndrome/Autism Spectrum Disorders. I have also used an innovative device, based on pressure sensors that can non-invasively detect the slightest animal movement with unprecedented sensitivity and time resolution, during spontaneous behaviour. Analysing this signal with sophisticated computational tools, I could demonstrate the outstanding potential of this methodology for behavioural phenotyping in general, and more specifically for the investigation of pain, fear or locomotion in normal mice and models of neurodevelopmental and neurodegenerative disorders

    Identification and neuromodulation of brain states to promote recovery of consciousness

    Get PDF
    Experimental and clinical studies of consciousness identify brain states (i.e., transient, relevant features of the brain associated with the state of consciousness) in a non-systematic manner and largely independent from the research into the induction of state changes. In this narrative review with a focus on patients with a disorder of consciousness (DoC), we synthesize advances on the identification of brain states associated with consciousness in animal models and physiological (sleep), pharmacological (anesthesia) and pathological (DoC) states of altered consciousness in human. We show that in reduced consciousness the frequencies in which the brain operates are slowed down and that the pattern of functional communication in the brain is sparser, less efficient, and less complex. The results also highlight damaged resting state networks, in particular the default mode network, decreased connectivity in long-range connections and in the thalamocortical loops. Next, we show that therapeutic approaches to treat DoC, through pharmacology (e.g., amantadine, zolpidem), and (non-)invasive brain stimulation (e.g., transcranial current stimulation, deep brain stimulation) have shown some effectiveness to promote consciousness recovery. It seems that these deteriorated features of conscious brain states may improve in response to these neuromodulation approaches, yet, targeting often remains non-specific and does not always lead to (behavioral) improvements. Furthermore, in silico model-based approaches allow the development of personalized assessment of the effect of treatment on brain-wide dynamics. Although still in infancy, the fields of brain state identification and neuromodulation of brain states in relation to consciousness are showing fascinating developments that, when united, might propel the development of new and better targeted techniques for DoC. For example, brain states could be identified in a predictive setting, and the theoretical and empirical testing (i.e., in animals, under anesthesia and patients with a DoC) of neuromodulation techniques to promote consciousness could be investigated. This review further helps to identify where challenges and opportunities lay for the maturation of brain state research in the context of states of consciousness. Finally, it aids in recognizing possibilities and obstacles for the clinical translation of these diagnostic techniques and neuromodulation treatment options across both the multi-modal and multi-species approaches outlined throughout the review. This paper presents interactive figures, supported by the Live Paper initiative of the Human Brain Project, enabling the interaction with data and figures illustrating the concepts in the paper through EBRAINS (go to https://wiki.ebrains.eu/bin/view/Collabs/live-paper-states-altered-consciousness and get started with an EBRAINS account).NA is research fellow, OG is Research Associate, and SL is research director at FRS-FNRS. JA is postdoctoral fellow at the FWO. The study was further supported by the University and University Hospital of LiĂšge, the BIAL Foundation, the Belgian National Funds for Scientific Research (FRS-FNRS), the European Union's Horizon 2020 Framework Programme for Research and Innovation under the Specific Grant Agreement No. 945539 (Human Brain Project SGA3), the FNRS PDR project (T.0134.21), the ERA-Net FLAG-ERA JTC2021 project ModelDXConsciousness (Human Brain Project Partnering Project), the fund Generet, the King Baudouin Foundation, the TĂ©lĂ©vie Foundation, the European Space Agency (ESA) and the Belgian Federal Science Policy Office (BELSPO) in the framework of the PRODEX Programme, the Public Utility Foundation 'UniversitĂ© EuropĂ©enne du Travail', "Fondazione Europea di Ricerca Biomedica", the BIAL Foundation, the Mind Science Foundation, the European Commission, the Fondation Leon Fredericq, the Mind-Care foundation, the DOCMA project (EU-H2020-MSCA–RISE–778234), the National Natural Science Foundation of China (Joint Research Project 81471100) and the European Foundation of Biomedical Research FERB Onlus

    Investigation of Nonlinear Pupil Dynamics by Recurrence Quantification Analysis

    Get PDF

    Environmental Sensitivity and Paranormal Experiences

    Get PDF
    The physical environment affects every individual differently, however past research suggests that certain individuals exhibit a greater susceptibility to environmental factors than the general population (Jawer, 2006). According to Jawer (2006) these environmentally sensitive individuals are also significantly more likely to report paranormal experiences than non-sensitives. The current study set out to test the hypothesis that environmentally sensitive individuals will report more past paranormal experiences as well as more haunt-type experiences in a natural setting. The study also looked at whether subtle differences in electromagnetic fields (EMFs) led to an increase in reported haunt-type experiences among sensitives. Methods: Participants (N=251) completed a questionnaire which categorized them as either environmentally sensitive or non-sensitive and were then led on a guided tour of an allegedly haunted location where they reported any unusual phenomena that they experienced. EMF readings were taken of the rooms visited on the tour and based on those readings the rooms were either designated as ‘High EMF’ rooms or ‘Low EMF’ rooms. Results: Sensitives reported significantly more past paranormal experiences and haunt-type experiences in a natural setting. Overall there were significantly more haunt-type experiences in ‘High EMF’ rooms than ‘Low EMF’ rooms suggesting an association between increased EMFs and reports of haunt-type experiences. Further analysis showed that sensitives reported significantly more haunt-type experiences in ‘High EMF’ rooms than ‘Low EMF’ rooms; however there was no significant difference in reported experiences between rooms among non-sensitives which suggests that sensitives could be picking up on subtle EMF differences leading to an increase in reports of haunt-type experiences

    Advanced Signal Processing in Wearable Sensors for Health Monitoring

    Get PDF
    Smart, wearables devices on a miniature scale are becoming increasingly widely available, typically in the form of smart watches and other connected devices. Consequently, devices to assist in measurements such as electroencephalography (EEG), electrocardiogram (ECG), electromyography (EMG), blood pressure (BP), photoplethysmography (PPG), heart rhythm, respiration rate, apnoea, and motion detection are becoming more available, and play a significant role in healthcare monitoring. The industry is placing great emphasis on making these devices and technologies available on smart devices such as phones and watches. Such measurements are clinically and scientifically useful for real-time monitoring, long-term care, and diagnosis and therapeutic techniques. However, a pertaining issue is that recorded data are usually noisy, contain many artefacts, and are affected by external factors such as movements and physical conditions. In order to obtain accurate and meaningful indicators, the signal has to be processed and conditioned such that the measurements are accurate and free from noise and disturbances. In this context, many researchers have utilized recent technological advances in wearable sensors and signal processing to develop smart and accurate wearable devices for clinical applications. The processing and analysis of physiological signals is a key issue for these smart wearable devices. Consequently, ongoing work in this field of study includes research on filtration, quality checking, signal transformation and decomposition, feature extraction and, most recently, machine learning-based methods
    • 

    corecore