92 research outputs found

    Characterization of Cyclically Fully commutative elements in finite and affine Coxeter Groups

    Full text link
    An element of a Coxeter group W is fully commutative if any two of its reduced decompositions are related by a series of transpositions of adjacent commuting generators. An element of a Coxeter group W is cyclically fully commutative if any of its cyclic shifts remains fully commutative. These elements were studied in Boothby et al.. In particular the authors enumerated cyclically fully commutative elements in all Coxeter groups having a finite number of them. In this work we characterize and enumerate cyclically fully commutative elements according to their Coxeter length in all finite or affine Coxeter groups by using a new operation on heaps, the cylindric transformation. In finite types, this refines the work of Boothby et al., by adding a new parameter. In affine type, all the results are new. In particular, we prove that there is a finite number of cyclically fully commutative logarithmic elements in all affine Coxeter groups. We study afterwards the cyclically fully commutative involutions and prove that their number is finite in all Coxeter groups.Comment: 23 pages, 16 figure

    Characterization of cyclically fully commutative elements in finite and affine Coxeter groups

    Get PDF
    An element of a Coxeter group is fully commutative if any two of its reduced decompositions are related by a series of transpositions of adjacent commuting generators. An element of a Coxeter group is cyclically fully commutative if any of its cyclic shifts remains fully commutative. These elements were studied by Boothby et al. (2012). In particular the authors precisely identified the Coxeter groups having a finite number of cyclically fully commutative elements and enumerated them. In this work we characterize and enumerate those elements according to their Coxeter length in all finite and all affine Coxeter groups by using an operation on heaps, the cylindrical closure. In finite types, this refines the work of Boothby et al. (2012), by adding a new parameter. In affine type, all the results are new. In particular, we prove that there is a finite number of cyclically fully commutative logarithmic elements in all affine Coxeter groups. We also study the cyclically fully commutative involutions and prove that their number is finite in all Coxeter groups

    Morphisms and order ideals of toric posets

    Get PDF
    Toric posets are cyclic analogues of finite posets. They can be viewed combinatorially as equivalence classes of acyclic orientations generated by converting sources into sinks, or geometrically as chambers of toric graphic hyperplane arrangements. In this paper we study toric intervals, morphisms, and order ideals, and we provide a connection to cyclic reducibility and conjugacy in Coxeter groups.Comment: 28 pages, 8 figures. A 12-page "extended abstract" version appears as [v2

    On the cyclically fully commutative elements of Coxeter groups

    Get PDF
    Let W be an arbitrary Coxeter group. If two elements have expressions that are cyclic shifts of each other (as words), then they are conjugate (as group elements) in W. We say that w is cyclically fully commutative (CFC) if every cyclic shift of any reduced expression for w is fully commutative (i.e., avoids long braid relations). These generalize Coxeter elements in that their reduced expressions can be described combinatorially by acyclic directed graphs, and cyclically shifting corresponds to source-to-sink conversions. In this paper, we explore the combinatorics of the CFC elements and enumerate them in all Coxeter groups. Additionally, we characterize precisely which CFC elements have the property that powers of them remain fully commutative, via the presence of a simple combinatorial feature called a band. This allows us to give necessary and sufficient conditions for a CFC element w to be logarithmic, that is, ℓ(wk)=k⋅ℓ(w) for all k≥1, for a large class of Coxeter groups that includes all affine Weyl groups and simply laced Coxeter groups. Finally, we give a simple non-CFC element that fails to be logarithmic under these conditions

    Quelques développements combinatoires autour des groupes de Coxeter et des partitions d'entiers

    Get PDF
    This thesis focuses on enumerative combinatorics, particularly on integer partitions and Coxeter groups. In the first part, like Han and Nekrasov-Okounkov, we study the combinatorial expansion of power of the Dedekind's eta function, in terms of hook lengths of integer partitions. Our approach, bijective, use the Macdonald identities in affine types, generalizing the study of Han in the case of type A. We extend with new parameters the expansions that we obtained through new properties of the Littlewood decomposition. This enables us to deduce symplectic hook length formulas and a connexion with representation theory. In the second part, we study the cyclically fully commutative elements in Coxeter groups, introduced by Boothby et al., which are a sub family of the fully commutative elements. We start by introducing a new construction, the cylindrical closure, which give a theoretical framework for the CPC elements analogous to the Viennot's heaps for fully commutative elements. We give a characterization of CPC elements in terms of cylindrical closures in any Coxeter groups. This allows to deduce a characterization of these elements in terms of reduced decompositions in all finite and affine Coxeter and their enumerations in those groups. By using the theory of finite state automata, we show that the generating function of these elements is always rational, in all Coxeter groupsCette thèse porte sur l'étude de la combinatoire énumérative, plus particulièrement autour des partitions d'entiers et des groupes de Coxeter. Dans une première partie, à l'instar de Han et de Nekrasov-Okounkov, nous étudions des développements combinatoires des puissances de la fonction êta de Dedekind, en termes de longueurs d'équerres de partitions d'entiers. Notre approche, bijective, utilise notamment les identités de Macdonald en types affines (en particulier le type C), généralisant l'approche de Han en type A. Nous étendons ensuite avec de nouveaux paramètres ces développements, grâce à de nouvelles propriétés de la décomposition de Littlewood vis-à-vis des partitions et statistiques considérées. Cela nous permet de déduire des formules des équerres symplectiques, ainsi qu'une connexion avec la théorie des représentations. Dans une seconde partie, nous étudions les éléments cycliquement pleinement commutatifs dans les groupes de Coxeter introduits par Boothby et al., qui forment une sous famille des éléments pleinement commutatifs. Nous commençons par développer une construction, la clôture cylindrique, donnant un cadre théorique qui est aux éléments CPC ce que les empilements de Viennot sont aux éléments PC. Nous donnons une caractérisation des éléments CPC en terme de clôtures cylindriques pour n'importe quel système de Coxeter. Celle-ci nous permet de déterminer en termes d'expressions réduites les éléments CPC dans tous les groupes de Coxeter finis ou affines, et d'en déduire dans tous ces groupes l'énumération de ces éléments. En utilisant la théorie des automates finis, nous montrons aussi que la série génératrice de ces éléments est une fraction rationnell

    Fomin-Greene monoids and Pieri operations

    Full text link
    We explore monoids generated by operators on certain infinite partial orders. Our starting point is the work of Fomin and Greene on monoids satisfying the relations (r˘+r+1˘)r+1˘r˘=r+1˘r˘(r˘+r+1˘)(\u{r}+\u{r+1})\u{r+1}\u{r}=\u{r+1}\u{r}(\u{r}+\u{r+1}) and r˘t˘=s˘r˘\u{r}\u{t}=\u{s}\u{r} if rt>1.|r-t|>1. Given such a monoid, the non-commutative functions in the variables ˘\u{} are shown to commute. Symmetric functions in these operators often encode interesting structure constants. Our aim is to introduce similar results for more general monoids not satisfying the relations of Fomin and Greene. This paper is an extension of a talk by the second author at the workshop on algebraic monoids, group embeddings and algebraic combinatorics at The Fields Institute in 2012.Comment: 33 pages, this is a paper expanding on a talk given at Fields Institute in 201
    corecore