29 research outputs found

    Characterization of bivariate hierarchical quartic box splines on a three-directional grid

    Get PDF
    International audienceWe consider the adaptive refinement of bivariate quartic C 2-smooth box spline spaces on the three-directional (type-I) grid G. The polynomial segments of these box splines belong to a certain subspace of the space of quar-tic polynomials, which will be called the space of special quartics. Given a bounded domain Ω ⊂ R 2 and finite sequence (G ℓ) ℓ=0,...,N of dyadically refined grids, we obtain a hierarchical grid by selecting mutually disjoint cells from all levels such that their union covers the entire domain. Using a suitable selection procedure allows to define a basis spanning the hierarchical box spline space. The paper derives a characterization of this space. Under certain mild assumptions on the hierarchical grid, the hierarchical spline space is shown to contain all C 2-smooth functions whose restrictions to the cells of the hierarchical grid are special quartic polynomials. Thus, in this case we can give an affirmative answer to the completeness questions for the hierarchical box spline basis

    Adaptive isogeometric analysis with hierarchical box splines

    Get PDF
    Isogeometric analysis is a recently developed framework based on finite element analysis, where the simple building blocks in geometry and solution space are replaced by more complex and geometrically-oriented compounds. Box splines are an established tool to model complex geometry, and form an intermediate approach between classical tensor-product B-splines and splines over triangulations. Local refinement can be achieved by considering hierarchically nested sequences of box spline spaces. Since box splines do not offer special elements to impose boundary conditions for the numerical solution of partial differential equations (PDEs), we discuss a weak treatment of such boundary conditions. Along the domain boundary, an appropriate domain strip is introduced to enforce the boundary conditions in a weak sense. The thickness of the strip is adaptively defined in order to avoid unnecessary computations. Numerical examples show the optimal convergence rate of box splines and their hierarchical variants for the solution of PDEs

    Completeness characterization of Type-I box splines

    Get PDF
    We present a completeness characterization of box splines on three-directional triangulations, also called Type-I box spline spaces, based on edge-contact smoothness properties. For any given Type-I box spline, of specific maximum degree and order of global smoothness, our results allow to identify the local linear subspace of polynomials spanned by the box spline translates. We use the global super-smoothness properties of box splines as well as the additional super-smoothness conditions at edges to characterize the spline space spanned by the box spline translates. Subsequently, we prove the completeness of this space space with respect to the local polynomial space induced by the box spline translates. The completeness property allows the construction of hierarchical spaces spanned by the translates of box splines for any polynomial degree on multilevel Type-I grids. We provide a basis for these hierarchical box spline spaces under explicit geometric conditions of the domain

    New Techniques for the Modeling, Processing and Visualization of Surfaces and Volumes

    Get PDF
    With the advent of powerful 3D acquisition technology, there is a growing demand for the modeling, processing, and visualization of surfaces and volumes. The proposed methods must be efficient and robust, and they must be able to extract the essential structure of the data and to easily and quickly convey the most significant information to a human observer. Independent of the specific nature of the data, the following fundamental problems can be identified: shape reconstruction from discrete samples, data analysis, and data compression. This thesis presents several novel solutions to these problems for surfaces (Part I) and volumes (Part II). For surfaces, we adopt the well-known triangle mesh representation and develop new algorithms for discrete curvature estimation,detection of feature lines, and line-art rendering (Chapter 3), for connectivity encoding (Chapter 4), and for topology preserving compression of 2D vector fields (Chapter 5). For volumes, that are often given as discrete samples, we base our approach for reconstruction and visualization on the use of new trivariate spline spaces on a certain tetrahedral partition. We study the properties of the new spline spaces (Chapter 7) and present efficient algorithms for reconstruction and visualization by iso-surface rendering for both, regularly (Chapter 8) and irregularly (Chapter 9) distributed data samples

    A simplex cut-cell adaptive method for high-order discretizations of the compressible Navier-Stokes equations

    Get PDF
    Thesis (Ph. D.)--Massachusetts Institute of Technology, Dept. of Aeronautics and Astronautics, 2007.Includes bibliographical references (p. 169-175).While an indispensable tool in analysis and design applications, Computational Fluid Dynamics (CFD) is still plagued by insufficient automation and robustness in the geometry-to-solution process. This thesis presents two ideas for improving automation and robustness in CFD: output-based mesh adaptation for high-order discretizations and simplex, cut-cell mesh generation. First, output-based mesh adaptation consists of generating a sequence of meshes in an automated fashion with the goal of minimizing an estimate of the error in an engineering output. This technique is proposed as an alternative to current CFD practices in which error estimation and mesh generation are largely performed by experienced practitioners. Second, cut-cell mesh generation is a potentially more automated and robust technique compared to boundary-conforming mesh generation for complex, curved geometries. Cut-cell meshes are obtained by cutting a given geometry of interest out of a background mesh that need not conform to the geometry boundary. Specifically, this thesis develops the idea of simplex cut cells, in which the background mesh consists of triangles or tetrahedra that can be stretched in arbitrary directions to efficiently resolve boundary-layer and wake features.(cont.) The compressible Navier-Stokes equations in both two and three dimensions are discretized using the discontinuous Galerkin (DG) finite element method. An anisotropic h-adaptation technique is presented for high-order (p > 1) discretizations, driven by an output-error estimate obtained from the solution of an adjoint problem. In two and three dimensions, algorithms are presented for intersecting the geometry with the background mesh and for constructing the resulting cut cells. In addition, a quadrature technique is proposed for accurately integrating high-order functions on arbitrarily-shaped cut cells and cut faces. Accuracy on cut-cell meshes is demonstrated by comparing solutions to those on standard, boundary-conforming meshes. In two dimensions, robustness of the cut-cell, adaptive technique is successfully tested for highly-anisotropic boundary-layer meshes representative of practical high-Re simulations. In three dimensions, robustness of cut cells is demonstrated for various representative curved geometries. Adaptation results show that for all test cases considered, p = 2 and p = 3 discretizations meet desired error tolerances using fewer degrees of freedom than p = 1.Krzysztof Jakub Fidkowski.Ph.D

    Handbook of Mathematical Geosciences

    Get PDF
    This Open Access handbook published at the IAMG's 50th anniversary, presents a compilation of invited path-breaking research contributions by award-winning geoscientists who have been instrumental in shaping the IAMG. It contains 45 chapters that are categorized broadly into five parts (i) theory, (ii) general applications, (iii) exploration and resource estimation, (iv) reviews, and (v) reminiscences covering related topics like mathematical geosciences, mathematical morphology, geostatistics, fractals and multifractals, spatial statistics, multipoint geostatistics, compositional data analysis, informatics, geocomputation, numerical methods, and chaos theory in the geosciences

    Statistical Modelling

    Get PDF
    The book collects the proceedings of the 19th International Workshop on Statistical Modelling held in Florence on July 2004. Statistical modelling is an important cornerstone in many scientific disciplines, and the workshop has provided a rich environment for cross-fertilization of ideas from different disciplines. It consists in four invited lectures, 48 contributed papers and 47 posters. The contributions are arranged in sessions: Statistical Modelling; Statistical Modelling in Genomics; Semi-parametric Regression Models; Generalized Linear Mixed Models; Correlated Data Modelling; Missing Data, Measurement of Error and Survival Analysis; Spatial Data Modelling and Time Series and Econometrics

    Untangling hotel industry’s inefficiency: An SFA approach applied to a renowned Portuguese hotel chain

    Get PDF
    The present paper explores the technical efficiency of four hotels from Teixeira Duarte Group - a renowned Portuguese hotel chain. An efficiency ranking is established from these four hotel units located in Portugal using Stochastic Frontier Analysis. This methodology allows to discriminate between measurement error and systematic inefficiencies in the estimation process enabling to investigate the main inefficiency causes. Several suggestions concerning efficiency improvement are undertaken for each hotel studied.info:eu-repo/semantics/publishedVersio

    Seventh Biennial Report : June 2003 - March 2005

    No full text
    corecore