22,576 research outputs found

    On the Termination of Linear and Affine Programs over the Integers

    Full text link
    The termination problem for affine programs over the integers was left open in\cite{Braverman}. For more that a decade, it has been considered and cited as a challenging open problem. To the best of our knowledge, we present here the most complete response to this issue: we show that termination for affine programs over Z is decidable under an assumption holding for almost all affine programs, except for an extremely small class of zero Lesbegue measure. We use the notion of asymptotically non-terminating initial variable values} (ANT, for short) for linear loop programs over Z. Those values are directly associated to initial variable values for which the corresponding program does not terminate. We reduce the termination problem of linear affine programs over the integers to the emptiness check of a specific ANT set of initial variable values. For this class of linear or affine programs, we prove that the corresponding ANT set is a semi-linear space and we provide a powerful computational methods allowing the automatic generation of these ANTANT sets. Moreover, we are able to address the conditional termination problem too. In other words, by taking ANT set complements, we obtain a precise under-approximation of the set of inputs for which the program does terminate.Comment: arXiv admin note: substantial text overlap with arXiv:1407.455

    On the Termination Problem for Probabilistic Higher-Order Recursive Programs

    Get PDF
    In the last two decades, there has been much progress on model checking of both probabilistic systems and higher-order programs. In spite of the emergence of higher-order probabilistic programming languages, not much has been done to combine those two approaches. In this paper, we initiate a study on the probabilistic higher-order model checking problem, by giving some first theoretical and experimental results. As a first step towards our goal, we introduce PHORS, a probabilistic extension of higher-order recursion schemes (HORS), as a model of probabilistic higher-order programs. The model of PHORS may alternatively be viewed as a higher-order extension of recursive Markov chains. We then investigate the probabilistic termination problem -- or, equivalently, the probabilistic reachability problem. We prove that almost sure termination of order-2 PHORS is undecidable. We also provide a fixpoint characterization of the termination probability of PHORS, and develop a sound (but possibly incomplete) procedure for approximately computing the termination probability. We have implemented the procedure for order-2 PHORSs, and confirmed that the procedure works well through preliminary experiments that are reported at the end of the article

    12th International Workshop on Termination (WST 2012) : WST 2012, February 19–23, 2012, Obergurgl, Austria / ed. by Georg Moser

    Get PDF
    This volume contains the proceedings of the 12th International Workshop on Termination (WST 2012), to be held February 19–23, 2012 in Obergurgl, Austria. The goal of the Workshop on Termination is to be a venue for presentation and discussion of all topics in and around termination. In this way, the workshop tries to bridge the gaps between different communities interested and active in research in and around termination. The 12th International Workshop on Termination in Obergurgl continues the successful workshops held in St. Andrews (1993), La Bresse (1995), Ede (1997), Dagstuhl (1999), Utrecht (2001), Valencia (2003), Aachen (2004), Seattle (2006), Paris (2007), Leipzig (2009), and Edinburgh (2010). The 12th International Workshop on Termination did welcome contributions on all aspects of termination and complexity analysis. Contributions from the imperative, constraint, functional, and logic programming communities, and papers investigating applications of complexity or termination (for example in program transformation or theorem proving) were particularly welcome. We did receive 18 submissions which all were accepted. Each paper was assigned two reviewers. In addition to these 18 contributed talks, WST 2012, hosts three invited talks by Alexander Krauss, Martin Hofmann, and Fausto Spoto

    Reachability and Termination Analysis of Concurrent Quantum Programs

    Full text link
    We introduce a Markov chain model of concurrent quantum programs. This model is a quantum generalization of Hart, Sharir and Pnueli's probabilistic concurrent programs. Some characterizations of the reachable space, uniformly repeatedly reachable space and termination of a concurrent quantum program are derived by the analysis of their mathematical structures. Based on these characterizations, algorithms for computing the reachable space and uniformly repeatedly reachable space and for deciding the termination are given.Comment: Accepted by Concur'12. Comments are welcom

    Proving termination through conditional termination

    Get PDF
    We present a constraint-based method for proving conditional termination of integer programs. Building on this, we construct a framework to prove (unconditional) program termination using a powerful mechanism to combine conditional termination proofs. Our key insight is that a conditional termination proof shows termination for a subset of program execution states which do not need to be considered in the remaining analysis. This facilitates more effective termination as well as non-termination analyses, and allows handling loops with different execution phases naturally. Moreover, our method can deal with sequences of loops compositionally. In an empirical evaluation, we show that our implementation VeryMax outperforms state-of-the-art tools on a range of standard benchmarks.Peer ReviewedPostprint (author's final draft

    Termination Analysis by Learning Terminating Programs

    Full text link
    We present a novel approach to termination analysis. In a first step, the analysis uses a program as a black-box which exhibits only a finite set of sample traces. Each sample trace is infinite but can be represented by a finite lasso. The analysis can "learn" a program from a termination proof for the lasso, a program that is terminating by construction. In a second step, the analysis checks that the set of sample traces is representative in a sense that we can make formal. An experimental evaluation indicates that the approach is a potentially useful addition to the portfolio of existing approaches to termination analysis
    corecore