4,280 research outputs found

    Inferring Unusual Crowd Events From Mobile Phone Call Detail Records

    Full text link
    The pervasiveness and availability of mobile phone data offer the opportunity of discovering usable knowledge about crowd behaviors in urban environments. Cities can leverage such knowledge in order to provide better services (e.g., public transport planning, optimized resource allocation) and safer cities. Call Detail Record (CDR) data represents a practical data source to detect and monitor unusual events considering the high level of mobile phone penetration, compared with GPS equipped and open devices. In this paper, we provide a methodology that is able to detect unusual events from CDR data that typically has low accuracy in terms of space and time resolution. Moreover, we introduce a concept of unusual event that involves a large amount of people who expose an unusual mobility behavior. Our careful consideration of the issues that come from coarse-grained CDR data ultimately leads to a completely general framework that can detect unusual crowd events from CDR data effectively and efficiently. Through extensive experiments on real-world CDR data for a large city in Africa, we demonstrate that our method can detect unusual events with 16% higher recall and over 10 times higher precision, compared to state-of-the-art methods. We implement a visual analytics prototype system to help end users analyze detected unusual crowd events to best suit different application scenarios. To the best of our knowledge, this is the first work on the detection of unusual events from CDR data with considerations of its temporal and spatial sparseness and distinction between user unusual activities and daily routines.Comment: 18 pages, 6 figure

    A geology-based 3D velocity model of the Amatrice Basin (Central Italy)

    Get PDF
    In this paper we present a new methodological approach which integrates geological and geophysical data into a 3D modelling process to be mainly employed in seismic hazard assessment studies of earthquake-prone areas around the world, as well as in applications for land use and urban planning. As a case study, the reconstruction of a geology-based 3D velocity model of the uppermost hundreds of metres of the Amatrice high-seismic-hazard area is described. The model was constructed using geological (e.g., maps, cross-sections and core-wells) and geophysical (e.g., down-hole, MASW, refraction, and seismic noise measurements) data, which were georeferenced and uploaded into 3D geological modelling software, where faults, stratigraphic boundaries, and geophysical attributes were digitised, checked, hierarchised, and modelled. The performed 3D geological model was parameterised with Vs and Vp velocities and, finally, the environmental noise (i.e., horizontal-to-vertical spectral ratio analysis, HVSR) recorded at some seismic stations was compared with the seismic responses modelled at some nearby control points. In the study area, the proposed geology-based 3D velocity model represents both a new potential geophysical prediction tool for areas devoid of geophysical measurements (i.e. HVSR curves) and a potential input-model for future ground-motion and seismic-wave-propagation simulations aimed at a more precise local seismic response assessment and, consequently, at the development of more realistic seismic hazard scenarios. The model here presented constitutes a first version of the 3D geological-geophysical model for the studied area, which will be improved with new data and more advanced algorithms available in the future

    Marine Benthic Habitat Mapping of Muir Inlet, Glacier Bay National Park and Preserve, Alaska With an Evaluation of the Coastal and Marine Ecological Classification Standard III

    Get PDF
    Seafloor geology and potential benthic habitats were mapped in Muir Inlet, Glacier Bay National Park and Preserve, Alaska, using multibeam sonar, ground-truth information, and geological interpretations. Muir Inlet is a recently deglaciated fjord that is under the influence of glacial and paraglacial marine processes. High glacially derived sediment and meltwater fluxes, slope instabilities, and variable bathymetry result in a highly dynamic estuarine environment and benthic ecosystem. We characterize the fjord seafloor and potential benthic habitats using the Coastal and Marine Ecological Classification Standard (CMECS) recently developed by the National Oceanic and Atmospheric Administration (NOAA) and NatureServe. Substrates within Muir Inlet are dominated by mud, derived from the high glacial debris flux. Water-column characteristics are derived from a combination of conductivity temperature depth (CTD) measurements and circulation-model results. We also present modern glaciomarine sediment accumulation data from quantitative differential bathymetry. These data show Muir Inlet is divided into two contrasting environments: a dynamic upper fjord and a relatively static lower fjord. The accompanying maps represent the first publicly available high-resolution bathymetric surveys of Muir Inlet. The results of these analyses serve as a test of the CMECS and as a baseline for continued mapping and correlations among seafloor substrate, benthic habitats, and glaciomarine processes

    A proposed concept for a crustal dynamics information management network

    Get PDF
    The findings of a requirements and feasibility analysis of the present and potential producers, users, and repositories of space-derived geodetic information are summarized. A proposed concept is presented for a crustal dynamics information management network that would apply state of the art concepts of information management technology to meet the expanding needs of the producers, users, and archivists of this geodetic information

    Large igneous provinces and mass extinctions: an update

    Get PDF
    The temporal link between mass extinctions and large igneous provinces is well known. Here, we examine this link by focusing on the potential climatic effects of large igneous province eruptions during several extinction crises that show the best correlation with mass volcanism: the Frasnian-Famennian (Late Devonian), Capitanian (Middle Permian), end-Permian, end-Triassic, and Toarcian (Early Jurassic) extinctions. It is clear that there is no direct correlation between total volume of lava and extinction magnitude because there is always sufficient recovery time between individual eruptions to negate any cumulative effect of successive flood basalt eruptions. Instead, the environmental and climatic damage must be attributed to single-pulse gas effusions. It is notable that the best-constrained examples of death-by-volcanism record the main extinction pulse at the onset of (often explosive) volcanism (e.g., the Capitanian, end-Permian, and end-Triassic examples), suggesting that the rapid injection of vast quantities of volcanic gas (CO 2 and SO 2 ) is the trigger for a truly major biotic catastrophe. Warming and marine anoxia feature in many extinction scenarios, indicating that the ability of a large igneous province to induce these proximal killers (from CO 2 emissions and thermogenic greenhouse gases) is the single most important factor governing its lethality. Intriguingly, many voluminous large igneous province eruptions, especially those of the Cretaceous oceanic plateaus, are not associated with significant extinction losses. This suggests that the link between the two phenomena may be controlled by a range of factors, including continental configuration, the latitude, volume, rate, and duration of eruption, its style and setting (continental vs. oceanic), the preexisting climate state, and the resilience of the extant biota to change

    Ciliate microzooplankton from the Northeastern Gulf of Mexico

    Get PDF
    Microzooplankton mediate a critical juncture of autotrophic and heterotrophic microbial production in the water column. Taxonomic and ecological work on this group has been substantial, yet few reports exist for the offshore waters of the Gulf of Mexico (GOM). This report focuses on protists in the phylum Ciliophora collected at stations spanning the continental shelf in the northeastern GOM. We hypothesized that patterns of spatial distribution across the region would be west–east along the coast, rather than north–south coastal to offshore, reflecting major freshwater sources. Samples were obtained by 10 µm plankton net for microscopy and by filtration of seawater for DNA extraction and ciliate-specific clone sequencing. Microscopy and molecular analysis recovered 46 and 156 taxa, respectively. Some visually identified taxa were missing from the sequence analysis and sequences from unknown species dominated molecular results. Differences were apparent with both dominant and rare taxa between February and July sampling and across a trophic gradient from coastal influenced stations to those more representative of the offshore environment. This report provides new data on ciliate microzooplankton richness and distribution in the GOM and adds to our understanding of microzooplankton diversity in the ocean

    New tendencies and advances in modern Statigraphical Research

    Get PDF
    Δεν διατίθεται περίληψηno abstract availabl

    Tephrochronology and its application: A review

    Get PDF
    Tephrochronology (from tephra, Gk ‘ashes’) is a unique stratigraphic method for linking, dating, and synchronizing geological, palaeoenvironmental, or archaeological sequences or events. As well as utilising the Law of Superposition, tephrochronology in practise requires tephra deposits to be characterized (or ‘fingerprinted’) using physical properties evident in the field together with those obtained from laboratory analyses. Such analyses include mineralogical examination (petrography) or geochemical analysis of glass shards or crystals using an electron microprobe or other analytical tools including laser-ablation-based mass spectrometry or the ion microprobe. The palaeoenvironmental or archaeological context in which a tephra occurs may also be useful for correlational purposes. Tephrochronology provides greatest utility when a numerical age obtained for a tephra or cryptotephra is transferrable from one site to another using stratigraphy and by comparing and matching inherent compositional features of the deposits with a high degree of likelihood. Used this way, tephrochronology is an age-equivalent dating method that provides an exceptionally precise volcanic-event stratigraphy. Such age transfers are valid because the primary tephra deposits from an eruption essentially have the same short-lived age everywhere they occur, forming isochrons very soon after the eruption (normally within a year). As well as providing isochrons for palaeoenvironmental and archaeological reconstructions, tephras through their geochemical analysis allow insight into volcanic and magmatic processes, and provide a comprehensive record of explosive volcanism and recurrence rates in the Quaternary (or earlier) that can be used to establish time-space relationships of relevance to volcanic hazard analysis. The basis and application of tephrochronology as a central stratigraphic and geochronological tool for Quaternary studies are presented and discussed in this review. Topics covered include principles of tephrochronology, defining isochrons, tephra nomenclature, mapping and correlating tephras from proximal to distal locations at metre- through to sub-millimetre-scale, cryptotephras, mineralogical and geochemical fingerprinting methods, numerical and statistical correlation techniques, and developments and applications in dating including the use of flexible depositional age-modelling techniques based on Bayesian statistics. Along with reference to wide-ranging examples and the identification of important recent advances in tephrochronology, such as the development of new geoanalytical approaches that enable individual small glass shards to be analysed near-routinely for major, trace, and rare-earth elements, potential problems such as miscorrelation, erroneous-age transfer, and tephra reworking and taphonomy (especially relating to cryptotephras) are also examined. Some of the challenges for future tephrochronological studies include refining geochemical analytical methods further, improving understanding of cryptotephra distribution and preservation patterns, improving age modelling including via new or enhanced radiometric or incremental techniques and Bayesian-derived models, evaluating and quantifying uncertainty in tephrochronology to a greater degree than at present, constructing comprehensive regional databases, and integrating tephrochronology with spatially referenced environmental and archaeometric data into 3-D reconstructions using GIS and geostatistics

    Megapixel multi-elemental imaging by Laser-Induced Breakdown Spectroscopy, a technology with considerable potential for paleoclimate studies

    Get PDF
    Paleoclimate studies play a crucial role in understanding past and future climates and their environmental impacts. Current methodologies for performing highly sensitive elemental analysis at micrometre spatial resolutions are restricted to the use of complex and/or not easily applied techniques, such as synchrotron radiation X-ray fluorescence micro-analysis (μ-SRXRF), nano secondary ion mass spectrometry (nano-SIMS) or laser ablation inductively coupled plasma mass spectrometry (LAICP-MS). Moreover, the analysis of large samples (>few cm²) with any of these methods remains very challenging due to their relatively low acquisition speed (~1–10 Hz), and because they must be operated in vacuum or controlled atmosphere. In this work, we proposed an imaging methodology based on laser-induced breakdown spectroscopy, to perform fast multi-elemental scanning of large geological samples with high performance in terms of sensitivity (ppm-level), lateral resolution (up to 10 μm) and operating speed (100 Hz). This method was successfully applied to obtain the first megapixel images of large geological samples and yielded new information, not accessible using other techniques. These results open a new perspective into the use of laser spectroscopy in a variety of geochemical applications

    Evolución geológica en la cuenca baja del río Colorado durante el cenozoico, Patagonia Norte, Argentina

    Get PDF
    Climatic changes and eustatic sea levels have been assumed to be the most important controllers of the Colorado River alluvial fan in northern Patagonia. Although the alluvial fan occurs in a region considered tectonically stable, there are pieces of evidence that the Miocene Andean orogeny has reactivated inherited structures, with subsequent geomorphological changes that date back to the Pleistocene. Besides, the clear evidence of neotectonism in the region and their effects on the evolution of this fan, it has not been studied in detail yet. In this study, we map and analyze six sections outcropping in different terraces of the alluvial fan with the primary aim of disentangling the role of tectonism, climate and eustatic changes on the evolution of the alluvial fan. This study is part of a bigger project aimed to understand the origin of the shallow lakes occurring in northern Patagonia. Our results indicate that the alluvial fan of the Colorado River was established in the area around the Middle Pleistocene. Evidence of deformations in Miocene to Pleistocene units indicates significant neotectonism during the Upper Pleistocene. By the Pleistocene-Holocene transition, tectonism produced incision generating a set of terraces. After this time, an important climate change from semiarid to arid favored the calcretization of some terraces. By the Pleistocene-Middle Holocene, the terraces were covered by ancient eolian sediment accumulated during dry conditions. By the Middle Holocene, a broad alluvial fan developed in the region under a warmer and more humid climate generating the Alluvial Colorado River-III deposit at the T3 terrace. In the late Holocene, aggradation process was favored by a high sea level and temperate-arid climate, producing T4 terrace. At the same time, this climate condition favored the local deflation-sedimentation processes that resulted in the deposition of modern eolian deposits (mE) over the T3 terrace. The depressions generated by the deflation were, later on, occupied by shallow lakes when the climate turn more humid. Subsequently, during regressive sea level condition, ca. 2000 years BP, the T4 terrace was partially eroded and the modern alluvial plain formed.La evolución geológica y morfológica del abanico aluvial del río Colorado en el norte de Patagonia ha sido explicada, en su zona distal, como resultado de cambios eustáticos y climáticos. A pesar de que el abanico se encuentra en una región considerada como una zona tectónicamente estable, hay evidencia de que la orogenia andina durante el Mioceno reactivó estructuras preexistentes y produjo cambios geomorfológicos asignados al Pleistoceno. Sin embargo, la influencia de la tectónica en la evolución del abanico aluvial del río Colorado no ha sido aún estudiada. En este trabajo, se levantaron y estudiaron seis secciones que afloran en distintas terrazas del abanico aluvial del río Colorado con el objetivo principal de comprender el rol de la tectónica, los cambios climáticos y eustáticos en la evolución del abanico aluvial. Este estudio es parte de un proyecto mayor que busca entender el origen de las lagunas someras presentes en la parte norte de la Patagonia. Nuestros resultados indican que el abanico aluvial del río Colorado se estableció en el área alrededor del Pleistoceno medio. La evidencia de deformaciones en las unidades del Mioceno al Pleistoceno indica una significativa actividad neotectónica durante el Pleistoceno superior. Para la transición Pleistoceno-Holoceno, el tectonismo generó una serie de terrazas. Posteriormente, un cambio climático de semiárido a árido favoreció la calcretización de las terrazas. Durante el Pleistoceno-Holoceno medio, las terrazas fueron cubiertas por la acumulación de sedimentos eólicos antiguos en condiciones de clima seco. En el Pleistoceno medio se desarrolló un amplio abanico aluvial en la región, en un clima más cálido y húmedo, que generó los depósitos aluviales del río Colorado-III en un nuevo nivel de terraza (T3). En el Holoceno tardío, el proceso de agradación fue favorecido por un alto nivel del mar y un clima templado-árido, que produjo la terraza T4. Al mismo tiempo, estas condiciones climáticas favorecieron los procesos de deflación-sedimentación local que dieron lugar a la deposición de depósitos eólicos modernos (mE) sobre la terraza T3. Las depresiones generadas por la deflación fueron, más tarde, ocupadas por los lagos poco profundos cuando el clima se volvió más húmedo. Posteriormente, durante condiciones regresivas del nivel del mar, ca. 2000 años AP, la terraza T4 fue parcialmente erosionada y se formó la llanura aluvial moderna.Fil: Seitz, Carina. Universidad Nacional del Sur. Departamento de Geología; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Bahía Blanca. Instituto Argentino de Oceanografía. Universidad Nacional del Sur. Instituto Argentino de Oceanografía; ArgentinaFil: Vélez, María I.. University Of Regina; CanadáFil: Perillo, Gerardo Miguel E.. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Bahía Blanca. Instituto Argentino de Oceanografía. Universidad Nacional del Sur. Instituto Argentino de Oceanografía; Argentina. Universidad Nacional del Sur. Departamento de Geología; Argentin
    corecore