92 research outputs found

    Modulação e conversão de formatos óticos avançados

    Get PDF
    Doutoramento em Engenharia ElectrotécnicaOver the years, the increased search and exchange of information lead to an increase of traffic intensity in todays optical communication networks. Coherent communications, using the amplitude and phase of the signal, reappears as one of the transmission techniques to increase the spectral efficiency and throughput of optical channels. In this context, this work present a study on format conversion of modulated signals using MZI-SOAs, based exclusively on all- optical techniques through wavelength conversion. This approach, when applied in interconnection nodes between optical networks with different bit rates and modulation formats, allow a better efficiency and scalability of the network. We start with an experimental characterization of the static and dynamic properties of the MZI-SOA. Then, we propose a semi-analytical model to describe the evolution of phase and amplitude at the output of the MZI-SOA. The model’s coefficients are obtained using a multi-objective genetic algorithm. We validate the model experimentally, by exploring the dependency of the optical signal with the operational parameters of the MZI-SOA. We also propose an all-optical technique for the conversion of amplitude modulation signals to a continuous phase modulation format. Finally, we study the potential of MZI-SOAs for the conversion of amplitude signals to QPSK and QAM signals. We show the dependency of the conversion process with the operational parameters deviation from the optimal values. The technique is experimentally validated for QPSK modulation.Nos últimos anos, a crescente procura e troca de informação tem levado ao aumento de tráfego nas redes de comunicação óticas atuais. As comunicações coerentes, com recurso à amplitude e fase do sinal, ressurgem como uma das técnicas de transmissão capazes de aumentar a eficiência espectral e o rendimento dos canais óticos. Nesse âmbito, este trabalho apresenta um estudo sobre a conversão de formatos de modulação de sinais, usando técnicas exclusivamente no domínio ótico, através de conversão de comprimento de onda, com base no MZI-SOA. Esta técnica, aplicada em nós óticos que interligam redes óticas com débitos binários distintos, permite uma maior escalabilidade e eficiência da rede. A tese começa por apresentar uma caracterização experimental detalhada das propriedades estáticas e dinâmicas do MZI-SOA. É depois proposto um modelo semi-analítico que descreve a evolução da amplitude e fase do sinal ótico à saída do MZI-SOA. Os coeficientes do modelo são obtidos recorrendo a um algoritmo genético multiobjectivo. O modelo é validado experimentalmente, explorando a dependência do sinal ótico com os parâmetros operacionais do MZI- SOA. Segue-se a proposta de uma técnica de conversão de formato de modulação de amplitude para modulação de fase contínua. Finalmente, é feito um estudo das potencialidades do MZI-SOA para conversão de formato de modulação de amplitude para modulação QPSK e QAM. Mostra-se a dependência da constelação do sinal com o desvio dos parâmetros operacionais, em torno do valor ótimo. A técnica é validada experimentalmente para modulação QPSK

    Advanced optical modulation and format conversion

    Get PDF
    Tese de Doutoramento em Engenharia Eletrotécnica apresentada à Universidade de Aveiro.Nos últimos anos, a crescente procura e troca de informação tem levado ao aumento de tráfego nas redes de comunicação óticas actuais. As comunicações coerentes, com recurso à amplitude e fase do sinal, ressurgem como uma das técnicas de transmissão capazes de aumentar a eficiência espectral e o rendimento dos canais óticos. Nesse âmbito, este trabalho apresenta um estudo sobre a conversão de formatos de modulação de sinais, usando técnicas exclusivamente no domínio ótico, através de conversão de comprimento de onda, com base no MZI-SOA. Esta técnica, aplicada em nós óticos que interligam redes óticas com débitos binàrios distintos, permite uma maior escalabilidade e eficiência da rede. A tese começa por apresentar uma caracterização experimental detalhada das propriedades estáticas e dinámicas do MZI-SOA. É depois proposto um modelo semi-analítico que descreve a evolução da amplitude e fase do sinal ótico à saída do MZI-SOA. Os coeficientes do modelo são obtidos recorrendo a um algoritmo genético multiobjectivo. O modelo é validado experimentalmente, explorando a dependência do sinal ótico com os parâmetros operacionais do MZISOA. Segue-se a proposta de uma técnica de conversão de formato de modulação de amplitude para modulação de fase contínua. Finalmente, é feito um estudo das potencialidades do MZI-SOA para conversão de formato de modulação de amplitude para modulação QPSK e QAM. Mostra-se a depedência da constelação do sinal com o desvio dos parâmetros operacionais, em torno do valor ótimo. A técnica é validada experimentalmente para modulação QPSK.ABSTRACT: Over the years, the increased search and exchange of information lead to an increase of traffic intensity in todays optical communication networks. Coherent communications, using the amplitude and phase of the signal, reappears as one of the transmission techniques to increase the spectral efficiency and throughput of optical channels. In this context, this work present a study on format conversion of modulated signals using MZI-SOAs, based exclusively on alloptical techniques through wavelength conversion. This approach, when applied in interconnection nodes between optical networks with different bit rates and modulation formats, allow a better efficiency and scalability of the network. We start with an experimental characterization of the static and dynamic properties of the MZI-SOA. Then, we propose a semi-analytical model to describe the evolution of phase and amplitude at the output of the MZI-SOA. The model’s coefficients are obtained using a multi-objective genetic algorithm. We validate the model experimentally, by exploring the dependency of the optical signal with the operational parameters of the MZI-SOA. We also propose an all-optical technique for the conversion of amplitude modulation signals to a continuous phase modulation format. Finally, we study the potential of MZI-SOAs for the conversion of amplitude signals to QPSK and QAM signals. We show the dependency of the conversion process with the operational parameters deviation from the optimal values. The technique is experimentally validated for QPSK modulation.Apoio financeiro da Fundação para a Ciência e Tecnologia — FCT através da bolsa SFRH / PROTEC / 50015 / 2009

    Interferometry Applications in All-Optical Communications Networks

    Get PDF
    Throughout the years, the expanded search and flow of information led to an expansion of traffic intensity in today’s optical communication systems. Coherent communications, using the amplitude and phase of the optical wave, resurface as one of the transmission methods to increase the effective bandwidth of optical channels. In this framework, this chapter presents a study on all-optical format conversion of modulated signals, using exclusively interferometric techniques through wavelength conversion, based on Mach-Zehnder interferometers with semiconductor optical amplifiers (MZI-SOA). This technique, when applied in interconnection nodes between optical networks with different bit rates and modulation formats, allows a better efficiency and scalability of the network. The chapter presents an experimental characterization of the static and dynamic properties of the MZI-SOA and explores all-optical techniques for the conversion from amplitude modulation to phase modulation. Finally, it briefly presents the potential of MZI-SOAs for the conversion of amplitude signals to more advanced modulation formats, such as quadrature phase shift keying (QPSK) and quadrature amplitude modulation (QAM) signals

    Multiphysics modelling of high-speed optoelectronic devices for silicon photonics platforms

    Get PDF
    L'abstract è presente nell'allegato / the abstract is in the attachmen

    Silicon Photonic Modulators for Low-power Applications

    Get PDF
    In this book, silicon photonic integrated circuits are combined with electro-optic organic materials for realizing energy-efficient modulators with unprecedented performance. These silicon-organic hybrid Mach-Zehnder modulators feature a compact size, sub-Volt drive voltages, and they support data rates up to 84 Gbit/s. In addition, a wet chemical waveguide fabrication scheme and an efficient fiber-chip coupling scheme are presented

    Silicon-organic hybrid (SOH) electro-optic modulators for high-speed and power-efficient communications

    Get PDF
    Silicon-organic hybrid (SOH) modulators add a highly efficient nonlinear organic electro-optic cladding material to the silicon photonic platform, thereby enabling efficient electro-optic modulation. In this book, the application potential of SOH modulators is investigated. Proof-of-principle experiments show that they can be used for high-speed communications at symbol rates up to 100 GBd and operated directly from a field-programmable gate array (FPGA) without additional driver amplifiers

    High-speed and Robust Integrated Silicon Nanophotonics for On-Chip Interconnects

    Get PDF
    Optical interconnects offer advantages over electrical interconnects such as higher bandwidth, low power, reduced interconnects delay, and immunity to electro-magnetic interference and signal crosstalk. However, in order for optical interconnects to be widely adopted, the technology must be made cost effective and must be simple to implement with CMOS electronics. Silicon photonics offers a great promise due to its inexpensive material and its compatibility with the current CMOS fabrication technology. Moreover, Silicon as a platform has the ability to integrate with different types of the optical components such as photodetector, modulator, light source, and waveguide to form a photonics integrated circuit. The goal of this work is to develop and fabricate devices that utilize a hybrid electronic-photonic integration to enable high performance optoelectronic computing and communication systems that overcome the barriers of electronics and dramatically enhance the performance of circuits and systems. We experimentally demonstrate a novel broadband optical time division multiplexer (OTDM) on a silicon chip. The system has a footprint× 700 micrometer and is inherently broadband with a bandwidth of over 100nm making it suitable for high-speed optical networks on chip. Also, we propose and fabricate a novel design to demultiplex the high bit rates of OTDM data using two differentially operated 5Gb/s modulators. Moreover, we propose a high-speed hybrid optical-time-division-multiplexing (OTDM) and wavelength-division-multiplexing (WDM) system that seamlessly generates high bit-rate data (\u3e200Gbit/s) from a low speed (5Gbit/s) quantum-dot mode locked laser pulse source. By utilizing time and wavelength domains, the proposed design is a promising solution for high-speed, compact and low-power consumption optical networks on chip. And finally, we experimentally demonstrate a robust, low insertion loss, compact Silicon ring resonator electro-optic modulator for Binary Phase Shift Key (BPSK) coding/decoding that encodes data in the phase of light. Our design improves significantly over recently demonstrated PSK modulator designs in terms of insertion loss and stability

    Wavelength Tunable Monolithic InP Receivers and Switches for Optical Communication Systems

    Get PDF
    Demand for information technology continues to grow, and with it the need for continuous improvement in telecommunication infrastructure. Recent interest in coherent modulation schemes, wavelength conversion, and large scale photonic integration for feasible, cost-effective scaling of existing network infrastructure has generated an intriguing area idea in which several technologies are combined at once to create a solution more capable than any individual approach. By leveraging these technologies together, a scalable path capable of providing sustainable growth in the telecommunication field may be realized. This dissertation explores this concept by the applying principles of monolithic integration to coherent receiver and optical switch technology with the goal of improving the size, cost, and performance of existing communication components as well as drive forward the state of the art in photonic integration. To this end, a monolithic coherent receiver was developed by integrating local oscillator, mixer, and high speed detection functions together on a single chip in an architecture capable of supporting polarization multiplexing and phase shift keying modulation formats. With an integrated local oscillator, the receiver’s capability is scalable, supporting higher capacity modulation formats through the use of more advanced feedback electronics and digital signal processing.In addition, a monolithic all-optical switch was developed by integrating both wavelength conversion and wavelength filtering functions onto a single chip. The architecture is capable of high speed switching of optical signals without costly optical-electrical conversion by utilizing an array of optical-optical modulators with scalable channel capacity and a static arrayed-waveguide grating router. By integrating these functions on the same chip, costly packaging issues may be avoided, greatly reducing development and production costs.By moving an increased number of components onto single die while maintaining similar performance to discrete solutions, the coherent receiver and all-optical switch devices presented in this work advance the state of the art by improving the cost and manufacturability of optical communication devices. Even more, these technologies represent a path toward manageable growth of optical communication systems for long haul, datacenter, and short reach solutions by demonstrating scalable architectures for each application. Development of such technology is not only vital but essential for the continued growth of the telecommunications industry. The novel application of photonic integration, coherent modulation, and optical switching technologies are a viable solution to maintaining sustainable growth in the telecommunications field
    corecore