1,570 research outputs found

    An Experimental Study of Reduced-Voltage Operation in Modern FPGAs for Neural Network Acceleration

    Get PDF
    We empirically evaluate an undervolting technique, i.e., underscaling the circuit supply voltage below the nominal level, to improve the power-efficiency of Convolutional Neural Network (CNN) accelerators mapped to Field Programmable Gate Arrays (FPGAs). Undervolting below a safe voltage level can lead to timing faults due to excessive circuit latency increase. We evaluate the reliability-power trade-off for such accelerators. Specifically, we experimentally study the reduced-voltage operation of multiple components of real FPGAs, characterize the corresponding reliability behavior of CNN accelerators, propose techniques to minimize the drawbacks of reduced-voltage operation, and combine undervolting with architectural CNN optimization techniques, i.e., quantization and pruning. We investigate the effect of environmental temperature on the reliability-power trade-off of such accelerators. We perform experiments on three identical samples of modern Xilinx ZCU102 FPGA platforms with five state-of-the-art image classification CNN benchmarks. This approach allows us to study the effects of our undervolting technique for both software and hardware variability. We achieve more than 3X power-efficiency (GOPs/W) gain via undervolting. 2.6X of this gain is the result of eliminating the voltage guardband region, i.e., the safe voltage region below the nominal level that is set by FPGA vendor to ensure correct functionality in worst-case environmental and circuit conditions. 43% of the power-efficiency gain is due to further undervolting below the guardband, which comes at the cost of accuracy loss in the CNN accelerator. We evaluate an effective frequency underscaling technique that prevents this accuracy loss, and find that it reduces the power-efficiency gain from 43% to 25%.Comment: To appear at the DSN 2020 conferenc

    ARM Wrestling with Big Data: A Study of Commodity ARM64 Server for Big Data Workloads

    Full text link
    ARM processors have dominated the mobile device market in the last decade due to their favorable computing to energy ratio. In this age of Cloud data centers and Big Data analytics, the focus is increasingly on power efficient processing, rather than just high throughput computing. ARM's first commodity server-grade processor is the recent AMD A1100-series processor, based on a 64-bit ARM Cortex A57 architecture. In this paper, we study the performance and energy efficiency of a server based on this ARM64 CPU, relative to a comparable server running an AMD Opteron 3300-series x64 CPU, for Big Data workloads. Specifically, we study these for Intel's HiBench suite of web, query and machine learning benchmarks on Apache Hadoop v2.7 in a pseudo-distributed setup, for data sizes up to 20GB20GB files, 5M5M web pages and 500M500M tuples. Our results show that the ARM64 server's runtime performance is comparable to the x64 server for integer-based workloads like Sort and Hive queries, and only lags behind for floating-point intensive benchmarks like PageRank, when they do not exploit data parallelism adequately. We also see that the ARM64 server takes 13rd\frac{1}{3}^{rd} the energy, and has an Energy Delay Product (EDP) that is 5071%50-71\% lower than the x64 server. These results hold promise for ARM64 data centers hosting Big Data workloads to reduce their operational costs, while opening up opportunities for further analysis.Comment: Accepted for publication in the Proceedings of the 24th IEEE International Conference on High Performance Computing, Data, and Analytics (HiPC), 201

    Internet of robotic things : converging sensing/actuating, hypoconnectivity, artificial intelligence and IoT Platforms

    Get PDF
    The Internet of Things (IoT) concept is evolving rapidly and influencing newdevelopments in various application domains, such as the Internet of MobileThings (IoMT), Autonomous Internet of Things (A-IoT), Autonomous Systemof Things (ASoT), Internet of Autonomous Things (IoAT), Internetof Things Clouds (IoT-C) and the Internet of Robotic Things (IoRT) etc.that are progressing/advancing by using IoT technology. The IoT influencerepresents new development and deployment challenges in different areassuch as seamless platform integration, context based cognitive network integration,new mobile sensor/actuator network paradigms, things identification(addressing, naming in IoT) and dynamic things discoverability and manyothers. The IoRT represents new convergence challenges and their need to be addressed, in one side the programmability and the communication ofmultiple heterogeneous mobile/autonomous/robotic things for cooperating,their coordination, configuration, exchange of information, security, safetyand protection. Developments in IoT heterogeneous parallel processing/communication and dynamic systems based on parallelism and concurrencyrequire new ideas for integrating the intelligent “devices”, collaborativerobots (COBOTS), into IoT applications. Dynamic maintainability, selfhealing,self-repair of resources, changing resource state, (re-) configurationand context based IoT systems for service implementation and integrationwith IoT network service composition are of paramount importance whennew “cognitive devices” are becoming active participants in IoT applications.This chapter aims to be an overview of the IoRT concept, technologies,architectures and applications and to provide a comprehensive coverage offuture challenges, developments and applications
    corecore