935 research outputs found

    Perturbation Based Decomposition of sEMG Signals

    Get PDF
    Surface electromyography records the motor unit action potential signals in the vicinity of the electrode to reveal information on muscle activation. Decomposition of sEMG signals for characterization of constituent motor unit action potentials in terms of amplitude and firing times is useful for clinical research as well as diagnosis of neurological disorders. Successful decomposition of sEMG signals would allow for pertinent motor unit action potential information to be acquired without discomfort to the subject or the need for a well-trained operator (compared with intramuscular EMG). To determine amplitudes and firing times for motor unit action potentials in an sEMG recording, Szlavik\u27s perturbation based decomposition may be applied. The decomposition was initially applied to synthetic sEMG signals and then to experimental data collected from the biceps brachii. Szlavik\u27s decomposition estimator yields satisfactory results for synthetic and experimental sEMG signals with reasonable complexity

    Clinical Quantitative Electromyography

    Get PDF
    No abstract available

    A denoising algorithm for surface EMG decomposition

    Get PDF
    The goal of the present thesis was to investigate a novel motor unit potential train (MUPT) editing routine, based on decreasing the variability in shape (variance ratio, VR) of the MUP ensemble. Decomposed sEMG data from 20 participants at 60% MVC of wrist flexion was used. There were two levels of denoising (relaxed and strict) criteria for removing discharge times associated with waveforms that did not decrease the VR and increase its signal-to-noise ratio (SNR) of the MUP ensemble. The peak-to-peak amplitude and the duration between the positive and negative peaks for the MUP template were dependent on the level of denoising (p’s 0.05). The same was true between denoising criteria (p>0.05). Editing the MUPT based on MUP shape resulted in significant differences in measures extracted from the MUP template, with trivial difference between the standard error of estimate for mean IDIs between the complete and denoised MUPTs

    Tracking motor units longitudinally across experimental sessions with high-density surface electromyography.

    Get PDF
    KEY POINTS: Classic motor unit (MU) recording and analysis methods do not allow the same MUs to be tracked across different experimental sessions, and therefore, there is limited experimental evidence on the adjustments in MU properties following training or during the progression of neuromuscular disorders. We propose a new processing method to track the same MUs across experimental sessions (separated by weeks) by using high-density surface electromyography. The application of the proposed method in two experiments showed that individual MUs can be identified reliably in measurements separated by weeks and that changes in properties of the tracked MUs across experimental sessions can be identified with high sensitivity. These results indicate that the behaviour and properties of the same MUs can be monitored across multiple testing sessions. The proposed method opens new possibilities in the understanding of adjustments in motor unit properties due to training interventions or the progression of pathologies. ABSTRACT: A new method is proposed for tracking individual motor units (MUs) across multiple experimental sessions on different days. The technique is based on a novel decomposition approach for high-density surface electromyography and was tested with two experimental studies for reliability and sensitivity. Experiment I (reliability): ten participants performed isometric knee extensions at 10, 30, 50 and 70% of their maximum voluntary contraction (MVC) force in three sessions, each separated by 1 week. Experiment II (sensitivity): seven participants performed 2 weeks of endurance training (cycling) and were tested pre-post intervention during isometric knee extensions at 10 and 30% MVC. The reliability (Experiment I) and sensitivity (Experiment II) of the measured MU properties were compared for the MUs tracked across sessions, with respect to all MUs identified in each session. In Experiment I, on average 38.3% and 40.1% of the identified MUs could be tracked across two sessions (1 and 2 weeks apart), for the vastus medialis and vastus lateralis, respectively. Moreover, the properties of the tracked MUs were more reliable across sessions than those of the full set of identified MUs (intra-class correlation coefficients ranged between 0.63-0.99 and 0.39-0.95, respectively). In Experiment II, ∌40% of the MUs could be tracked before and after the training intervention and training-induced changes in MU conduction velocity had an effect size of 2.1 (tracked MUs) and 1.5 (group of all identified motor units). These results show the possibility of monitoring MU properties longitudinally to document the effect of interventions or the progression of neuromuscular disorders

    Motor unit characteristics after targeted muscle reinnervation

    Get PDF
    Targeted muscle reinnervation (TMR) is a surgical procedure used to redirect nerves originally controlling muscles of the amputated limb into remaining muscles above the amputation, to treat phantom limb pain and facilitate prosthetic control. While this procedure effectively establishes robust prosthetic control, there is little knowledge on the behavior and characteristics of the reinnervated motor units. In this study we compared the m. pectoralis of five TMR patients to nine able-bodied controls with respect to motor unit action potential (MUAP) characteristics. We recorded and decomposed high-density surface EMG signals into individual spike trains of motor unit action potentials. In the TMR patients the MUAP surface area normalized to the electrode grid surface (0.25 ± 0.17 and 0.81 ± 0.46, p < 0.001) and the MUAP duration (10.92 ± 3.89 ms and 14.03 ± 3.91 ms, p < 0.01) were smaller for the TMR group than for the controls. The mean MUAP amplitude (0.19 ± 0.11 mV and 0.14 ± 0.06 mV, p = 0.07) was not significantly different between the two groups. Finally, we observed that MUAP surface representation in TMR generally overlapped, and the surface occupied by motor units corresponding to only one motor task was on average smaller than 12% of the electrode surface. These results suggest that smaller MUAP surface areas in TMR patients do not necessarily facilitate prosthetic control due to a high degree of overlap between these areas, and a neural information—based control could lead to improved performance. Based on the results we also infer that the size of the motor units after reinnervation is influenced by the size of the innervating motor neuron

    Experimental Investigations of EMG-Torque Modeling for the Human Upper Limb

    Get PDF
    The electrical activity of skeletal muscleñ€”the electromyogram (EMG)ñ€”is of value to many different application areas, including ergonomics, clinical biomechanics and prosthesis control. For many applications, the EMG is related to muscular tension, joint torque and/or applied forces. In these cases, a goal is for an EMG-torque model to emulate the natural relationship between the central nervous system (as evidenced in the surface EMG) and peripheral joints and muscles. This thesis work concentrated on experimental investigations of EMG-torque modeling. My contributions include: 1) continuing to evaluate the advantage of advanced EMG amplitude estimators, 2) studying system identification techniques (regularizing the least squares fit and increasing training data duration) to improve EMG-torque model performance, and 3) investigating the influence of joint angle on EMG-torque modeling. Results show that the advanced EMG amplitude estimator reduced the model error by 21%ñ€”71% compared to conventional estimators. Use of the regularized least squares fit with 52 seconds of training data reduced the model error by 20% compared to the least squares fit without regulation when using 26 seconds of training data. It is also demonstrated that the influence of joint angle can be modeled as a multiplicative factor in slowly force-varying and force-varying contractions at various, fixed angles. The performance of the models that account for the joint angle are not statistically different from a model that was trained at each angle separately and thus does not interpolate across angles. The EMG-torque models that account for joint angle and utilize advanced EMG amplitude estimation and system identification techniques achieved an error of 4.06±1.2% MVCF90 (i.e., error referenced to maximum voluntary contraction at 90° flexion), while models without using these advanced techniques and only accounting for a joint angle of 90° generated an error of 19.15±11.2% MVCF90. This thesis also summarizes other collaborative research contributions performed as part of this thesis. (1) EMG-force modeling at the finger tips was studied with the purpose of assessing the ability to determine two or more independent, continuous degrees of freedom of control from the muscles of the forearm [with WPI and Sherbrooke University]. (2) Investigation of EMG bandwidth requirements for whitening for real-time applications of EMG whitening techniques [with WPI colleagues]. (3) Investigation of the ability of surface EMG to estimate joint torque at future times [with WPI colleagues]. (4) Decomposition of needle EMG data was performed as part of a study to characterize motor unit behavior in patients with amyotrophic lateral sclerosis (ALS) [with Spaulding Rehabilitation Hospital, Boston, MA]

    High-density magnetomyography is superior to high-density surface electromyography for motor unit decomposition: a simulation study

    Get PDF
    Objective. Studying motor units is essential for understanding motor control, the detection of neuromuscular disorders and the control of human-machine interfaces. Individual motor unit firings are currently identified in vivo by decomposing electromyographic (EMG) signals. Due to our body’s properties and anatomy, individual motor units can only be separated to a limited extent with surface EMG. Unlike electrical signals, magnetic fields do not interact with human tissues. This physical property and the emerging technology of quantum sensors make magnetomyography (MMG) a highly promising methodology. However, the full potential of MMG to study neuromuscular physiology has not yet been explored. Approach. In this work, we perform in silico trials that combine a biophysical model of EMG and MMG with state-of-the-art algorithms for the decomposition of motor units. This allows the prediction of an upper-bound for the motor unit decomposition accuracy. Main results. It is shown that non-invasive high-density MMG data is superior over comparable high-density surface EMG data for the robust identification of the discharge patterns of individual motor units. Decomposing MMG instead of EMG increased the number of identifiable motor units by 76%. Notably, MMG exhibits a less pronounced bias to detect superficial motor units. Significance. The presented simulations provide insights into methods to study the neuromuscular system non-invasively and in vivo that would not be easily feasible by other means. Hence, this study provides guidance for the development of novel biomedical technologies

    Human motor augmentation - spinal motor neurons control of redundant degrees-of-freedom

    Get PDF
    In 1963, Stan Lee introduced a new villain to the Spiderman Universe: Dr Octopus – a human equipped with multiple robotic arms that can be controlled seamlessly in coordination with his natural limbs. Throughout the last decades, turning such fiction into real-life applications gave rise to the research field of human motor augmentation, ultimately aiming to enable humans to perform motor tasks that are sheer impossible with our natural limbs alone. While a significant process was made in designing artificial supernumerary limbs, a central problem remains: identifying adequate bodily signals that allow moving supernumerary degrees-of-freedom together with our natural ones. So far, neural activity in the brain seems to hold the greatest potential for providing all the flexibility needed to ensure such coordination between natural and supernumerary degrees-of-freedom. However, accessing neural populations in the cortical regions is accompanied by an unacceptable risk for most users. A different group of neural cells can be found in the outmost layer of the motor pathway, driving the contraction of muscles and generation of force – spinal motor neurons. The development of novel neural interfaces has made it possible to study single motor neuron activity with minimal harm to the user. This allows a direct and non-invasive window into the neural activity orchestrating human movement. In this dissertation, I investigate whether these neurons innervating our muscles could provide supernumerary control signals. The results indicate, in essence, that features extracted non-invasively from motor neuron activity have the potential to overcome current limitations in supernumerary control and thus could significantly advance human motor augmentation.Open Acces
    • 

    corecore