259 research outputs found

    A Simpler and Semantic Multidimensional Database Query Language to Facilitate Access to Information in Decision-making

    Get PDF
    OLAP and multidimensional database technology have contributed significantly to speed up and build confidence in the effectiveness of methodologies based on the use of management indicators in decision-making, industry, production, and services. Although there are a wide variety of tools related to the OLAP approach, many implementations are performed in relational database systems (R-OLAP). So, all interrogation actions are performed through queries that must be reinterpreted in the SQL language. This translation has several consequences because SQL language is based on a mixture of relational algebra and tuple relational calculus, which conceptually responds to the logic of the relational data model, very different from the needs of the multidimensional databases. This paper presents a multidimensional query language that allows expressing multidimensional queries directly over ROLAP databases. The implementation of the multidimensional query language will be done through a middleware that is responsible for mapping the queries, hiding the translation to a layer of software not noticeable to the end-user. Currently, progress has been made in the definition of a language where through a key statement, called aggregate, it is possible to execute the typical multidimensional operators which represent an important part of the most frequent operations in this type of database

    Hierarchies and relative operators in the OLAP environment

    Full text link

    An Open Source Based Data Warehouse Architecture to Support Decision Making in the Tourism Sector

    Get PDF
    In this paper an alternative Tourism oriented Data Warehousing architecture is proposed which makes use of the most recent free and open source technologies like Java, Postgresql and XML. Such architecture's aim will be to support the decision making process and giving an integrated view of the whole Tourism reality in an established context (local, regional, national, etc.) without requesting big investments for getting the necessary software.Tourism, Data warehousing architecture

    Towards development of fuzzy spatial datacubes : fundamental concepts with example for multidimensional coastal erosion risk assessment and representation

    Get PDF
    Les systĂšmes actuels de base de donnĂ©es gĂ©odĂ©cisionnels (GeoBI) ne tiennent gĂ©nĂ©ralement pas compte de l'incertitude liĂ©e Ă  l'imprĂ©cision et le flou des objets; ils supposent que les objets ont une sĂ©mantique, une gĂ©omĂ©trie et une temporalitĂ© bien dĂ©finies et prĂ©cises. Un exemple de cela est la reprĂ©sentation des zones Ă  risque par des polygones avec des limites bien dĂ©finies. Ces polygones sont crĂ©Ă©s en utilisant des agrĂ©gations d'un ensemble d'unitĂ©s spatiales dĂ©finies sur soit des intĂ©rĂȘts des organismes responsables ou les divisions de recensement national. MalgrĂ© la variation spatio-temporelle des multiples critĂšres impliquĂ©s dans l’analyse du risque, chaque polygone a une valeur unique de risque attribuĂ© de façon homogĂšne sur l'Ă©tendue du territoire. En rĂ©alitĂ©, la valeur du risque change progressivement d'un polygone Ă  l'autre. Le passage d'une zone Ă  l'autre n'est donc pas bien reprĂ©sentĂ© avec les modĂšles d’objets bien dĂ©finis (crisp). Cette thĂšse propose des concepts fondamentaux pour le dĂ©veloppement d'une approche combinant le paradigme GeoBI et le concept flou de considĂ©rer la prĂ©sence de l’incertitude spatiale dans la reprĂ©sentation des zones Ă  risque. En fin de compte, nous supposons cela devrait amĂ©liorer l’analyse du risque. Pour ce faire, un cadre conceptuel est dĂ©veloppĂ© pour crĂ©er un model conceptuel d’une base de donnĂ©e multidimensionnelle avec une application pour l’analyse du risque d’érosion cĂŽtier. Ensuite, une approche de la reprĂ©sentation des risques fondĂ©e sur la logique floue est dĂ©veloppĂ©e pour traiter l'incertitude spatiale inhĂ©rente liĂ©e Ă  l'imprĂ©cision et le flou des objets. Pour cela, les fonctions d'appartenance floues sont dĂ©finies en basant sur l’indice de vulnĂ©rabilitĂ© qui est un composant important du risque. Au lieu de dĂ©terminer les limites bien dĂ©finies entre les zones Ă  risque, l'approche proposĂ©e permet une transition en douceur d'une zone Ă  une autre. Les valeurs d'appartenance de plusieurs indicateurs sont ensuite agrĂ©gĂ©es basĂ©es sur la formule des risques et les rĂšgles SI-ALORS de la logique floue pour reprĂ©senter les zones Ă  risque. Ensuite, les Ă©lĂ©ments clĂ©s d'un cube de donnĂ©es spatiales floues sont formalisĂ©s en combinant la thĂ©orie des ensembles flous et le paradigme de GeoBI. En plus, certains opĂ©rateurs d'agrĂ©gation spatiale floue sont prĂ©sentĂ©s. En rĂ©sumĂ©, la principale contribution de cette thĂšse se rĂ©fĂšre de la combinaison de la thĂ©orie des ensembles flous et le paradigme de GeoBI. Cela permet l’extraction de connaissances plus comprĂ©hensibles et appropriĂ©es avec le raisonnement humain Ă  partir de donnĂ©es spatiales et non-spatiales. Pour ce faire, un cadre conceptuel a Ă©tĂ© proposĂ© sur la base de paradigme GĂ©oBI afin de dĂ©velopper un cube de donnĂ©es spatiale floue dans le system de Spatial Online Analytical Processing (SOLAP) pour Ă©valuer le risque de l'Ă©rosion cĂŽtiĂšre. Cela nĂ©cessite d'abord d'Ă©laborer un cadre pour concevoir le modĂšle conceptuel basĂ© sur les paramĂštres de risque, d'autre part, de mettre en Ɠuvre l’objet spatial flou dans une base de donnĂ©es spatiales multidimensionnelle, puis l'agrĂ©gation des objets spatiaux flous pour envisager Ă  la reprĂ©sentation multi-Ă©chelle des zones Ă  risque. Pour valider l'approche proposĂ©e, elle est appliquĂ©e Ă  la rĂ©gion Perce (Est du QuĂ©bec, Canada) comme une Ă©tude de cas.Current Geospatial Business Intelligence (GeoBI) systems typically do not take into account the uncertainty related to vagueness and fuzziness of objects; they assume that the objects have well-defined and exact semantics, geometry, and temporality. Representation of fuzzy zones by polygons with well-defined boundaries is an example of such approximation. This thesis uses an application in Coastal Erosion Risk Analysis (CERA) to illustrate the problems. CERA polygons are created using aggregations of a set of spatial units defined by either the stakeholders’ interests or national census divisions. Despite spatiotemporal variation of the multiple criteria involved in estimating the extent of coastal erosion risk, each polygon typically has a unique value of risk attributed homogeneously across its spatial extent. In reality, risk value changes gradually within polygons and when going from one polygon to another. Therefore, the transition from one zone to another is not properly represented with crisp object models. The main objective of the present thesis is to develop a new approach combining GeoBI paradigm and fuzzy concept to consider the presence of the spatial uncertainty in the representation of risk zones. Ultimately, we assume this should improve coastal erosion risk assessment. To do so, a comprehensive GeoBI-based conceptual framework is developed with an application for Coastal Erosion Risk Assessment (CERA). Then, a fuzzy-based risk representation approach is developed to handle the inherent spatial uncertainty related to vagueness and fuzziness of objects. Fuzzy membership functions are defined by an expert-based vulnerability index. Instead of determining well-defined boundaries between risk zones, the proposed approach permits a smooth transition from one zone to another. The membership values of multiple indicators (e.g. slop and elevation of region under study, infrastructures, houses, hydrology network and so on) are then aggregated based on risk formula and Fuzzy IF-THEN rules to represent risk zones. Also, the key elements of a fuzzy spatial datacube are formally defined by combining fuzzy set theory and GeoBI paradigm. In this regard, some operators of fuzzy spatial aggregation are also formally defined. The main contribution of this study is combining fuzzy set theory and GeoBI. This makes spatial knowledge discovery more understandable with human reasoning and perception. Hence, an analytical conceptual framework was proposed based on GeoBI paradigm to develop a fuzzy spatial datacube within Spatial Online Analytical Processing (SOLAP) to assess coastal erosion risk. This necessitates developing a framework to design a conceptual model based on risk parameters, implementing fuzzy spatial objects in a spatial multi-dimensional database, and aggregating fuzzy spatial objects to deal with multi-scale representation of risk zones. To validate the proposed approach, it is applied to Perce region (Eastern Quebec, Canada) as a case study

    A survey of logical models for OLAP databases

    Full text link

    Database Workload Management (Dagstuhl Seminar 12282)

    Get PDF
    This report documents the program and the outcomes of Dagstuhl Seminar 12282 "Database Workload Management". Dagstuhl Seminar 12282 was designed to provide a venue where researchers can engage in dialogue with industrial participants for an in-depth exploration of challenging industrial workloads, where industrial participants can challenge researchers to apply the lessons-learned from their large-scale experiments to multiple real systems, and that would facilitate the release of real workloads that can be used to drive future research, and concrete measures to evaluate and compare workload management techniques in the context of these workloads

    A conceptual framework and a risk management approach for interoperability between geospatial datacubes

    Get PDF
    De nos jours, nous observons un intĂ©rĂȘt grandissant pour les bases de donnĂ©es gĂ©ospatiales multidimensionnelles. Ces bases de donnĂ©es sont dĂ©veloppĂ©es pour faciliter la prise de dĂ©cisions stratĂ©giques des organisations, et plus spĂ©cifiquement lorsqu’il s’agit de donnĂ©es de diffĂ©rentes Ă©poques et de diffĂ©rents niveaux de granularitĂ©. Cependant, les utilisateurs peuvent avoir besoin d’utiliser plusieurs bases de donnĂ©es gĂ©ospatiales multidimensionnelles. Ces bases de donnĂ©es peuvent ĂȘtre sĂ©mantiquement hĂ©tĂ©rogĂšnes et caractĂ©risĂ©es par diffĂ©rent degrĂ©s de pertinence par rapport au contexte d’utilisation. RĂ©soudre les problĂšmes sĂ©mantiques liĂ©s Ă  l’hĂ©tĂ©rogĂ©nĂ©itĂ© et Ă  la diffĂ©rence de pertinence d’une maniĂšre transparente aux utilisateurs a Ă©tĂ© l’objectif principal de l’interopĂ©rabilitĂ© au cours des quinze derniĂšres annĂ©es. Dans ce contexte, diffĂ©rentes solutions ont Ă©tĂ© proposĂ©es pour traiter l’interopĂ©rabilitĂ©. Cependant, ces solutions ont adoptĂ© une approche non systĂ©matique. De plus, aucune solution pour rĂ©soudre des problĂšmes sĂ©mantiques spĂ©cifiques liĂ©s Ă  l’interopĂ©rabilitĂ© entre les bases de donnĂ©es gĂ©ospatiales multidimensionnelles n’a Ă©tĂ© trouvĂ©e. Dans cette thĂšse, nous supposons qu’il est possible de dĂ©finir une approche qui traite ces problĂšmes sĂ©mantiques pour assurer l’interopĂ©rabilitĂ© entre les bases de donnĂ©es gĂ©ospatiales multidimensionnelles. Ainsi, nous dĂ©finissons tout d’abord l’interopĂ©rabilitĂ© entre ces bases de donnĂ©es. Ensuite, nous dĂ©finissons et classifions les problĂšmes d’hĂ©tĂ©rogĂ©nĂ©itĂ© sĂ©mantique qui peuvent se produire au cours d’une telle interopĂ©rabilitĂ© de diffĂ©rentes bases de donnĂ©es gĂ©ospatiales multidimensionnelles. Afin de rĂ©soudre ces problĂšmes d’hĂ©tĂ©rogĂ©nĂ©itĂ© sĂ©mantique, nous proposons un cadre conceptuel qui se base sur la communication humaine. Dans ce cadre, une communication s’établit entre deux agents systĂšme reprĂ©sentant les bases de donnĂ©es gĂ©ospatiales multidimensionnelles impliquĂ©es dans un processus d’interopĂ©rabilitĂ©. Cette communication vise Ă  Ă©changer de l’information sur le contenu de ces bases. Ensuite, dans l’intention d’aider les agents Ă  prendre des dĂ©cisions appropriĂ©es au cours du processus d’interopĂ©rabilitĂ©, nous Ă©valuons un ensemble d’indicateurs de la qualitĂ© externe (fitness-for-use) des schĂ©mas et du contexte de production (ex., les mĂ©tadonnĂ©es). Finalement, nous mettons en Ɠuvre l’approche afin de montrer sa faisabilitĂ©.Today, we observe wide use of geospatial databases that are implemented in many forms (e.g., transactional centralized systems, distributed databases, multidimensional datacubes). Among those possibilities, the multidimensional datacube is more appropriate to support interactive analysis and to guide the organization’s strategic decisions, especially when different epochs and levels of information granularity are involved. However, one may need to use several geospatial multidimensional datacubes which may be semantically heterogeneous and having different degrees of appropriateness to the context of use. Overcoming the semantic problems related to the semantic heterogeneity and to the difference in the appropriateness to the context of use in a manner that is transparent to users has been the principal aim of interoperability for the last fifteen years. However, in spite of successful initiatives, today's solutions have evolved in a non systematic way. Moreover, no solution has been found to address specific semantic problems related to interoperability between geospatial datacubes. In this thesis, we suppose that it is possible to define an approach that addresses these semantic problems to support interoperability between geospatial datacubes. For that, we first describe interoperability between geospatial datacubes. Then, we define and categorize the semantic heterogeneity problems that may occur during the interoperability process of different geospatial datacubes. In order to resolve semantic heterogeneity between geospatial datacubes, we propose a conceptual framework that is essentially based on human communication. In this framework, software agents representing geospatial datacubes involved in the interoperability process communicate together. Such communication aims at exchanging information about the content of geospatial datacubes. Then, in order to help agents to make appropriate decisions during the interoperability process, we evaluate a set of indicators of the external quality (fitness-for-use) of geospatial datacube schemas and of production context (e.g., metadata). Finally, we implement the proposed approach to show its feasibility
    • 

    corecore