3,309 research outputs found

    Modeling for Active Control of Combustion and Thermally Driven Oscillations

    Get PDF
    Organized oscillations excited and sustained by high densities of energy release in combustion chambers have long caused serious problems in development of propulsion systems. The amplitudes often become sufficiently large to cause unacceptable structural vibrations. Because the oscillations are self-excited, they reach limiting amplitudes (limit cycles) only because of the action of nonlinear processes. Traditionally, satisfactory behavior has been achieved through a combination of trial-and-error design and testing, with control always involving passive means: geometrical modifications, changes of propellant composition, or devices to enhance dissipation of acoustic energy. Active control has been applied only to small-scale laboratory devices, but the limited success suggests the possibility of serious applications to full-scale propulsion systems. Realization of that potential rests on further experimental work, combined with deeper understanding of the mechanisms causing the oscillations and of the physical behavior of the systems. Effective design of active control systems will require faithful modeling of the relevant processes over broad frequency ranges covering the spectra of natural modes. This paper will cover the general character of the linear and nonlinear behavior of combustion systems, with special attention to acoustics and the mechanisms of excitation. The discussion is intended to supplement the paper by Doyle et al. concerned primarily with controls issues and the observed behavior of simple laboratory devices

    Temperature in and out of equilibrium: a review of concepts, tools and attempts

    Full text link
    We review the general aspects of the concept of temperature in equilibrium and non-equilibrium statistical mechanics. Although temperature is an old and well-established notion, it still presents controversial facets. After a short historical survey of the key role of temperature in thermodynamics and statistical mechanics, we tackle a series of issues which have been recently reconsidered. In particular, we discuss different definitions and their relevance for energy fluctuations. The interest in such a topic has been triggered by the recent observation of negative temperatures in condensed matter experiments. Moreover, the ability to manipulate systems at the micro and nano-scale urges to understand and clarify some aspects related to the statistical properties of small systems (as the issue of temperature's "fluctuations"). We also discuss the notion of temperature in a dynamical context, within the theory of linear response for Hamiltonian systems at equilibrium and stochastic models with detailed balance, and the generalised fluctuation-response relations, which provide a hint for an extension of the definition of temperature in far-from-equilibrium systems. To conclude we consider non-Hamiltonian systems, such as granular materials, turbulence and active matter, where a general theoretical framework is still lacking.Comment: Review article, 137 pages, 12 figure

    Experimental investigation of liquid fragmentation in hypersonic cross flow

    Get PDF
    This thesis presents an experimental investigation carried out to study penetration and fragmentation of liquid injected into Mach 6 hypersonic cross flow. Flow topology, shock and vortex systems, fragmentation and atomization mechanisms are investigated using high-speed photography, Schlieren photography, flow visualization and Phase Doppler Interferometry techniques. All experiments are conducted at the H-3 Mach 6 wind tunnel facility of the von Karman Institute. Water is used for all tests. Freestream conditions of air flow are kept constant. The variation of the injector geometry and the effect of momentum flux ratio are studied throughout the experimental campaign. Droplet size measurements are analyzed and treated to characterize the atomization process of the liquid jet. The Sauter Mean Diameter and the standard deviation of the droplet size distribution are calculated and presented as a function of location and momentum flux ratio. The obtained Sauter Mean Diameter distribution is compared with the theory available in the literature for lower cross flow speed cases. The whipping phenomenon observed for the low momentum flux ratio liquid injections is explained by frequency maps, which allow one to see the flow domains with similar frequency content. This analysis proposes that the penetration of liquid jet determines the shape of the bow shock, which determines the location and angle of the separation shock. The separation shock is observed to penetrate into liquid phase, playing an important role in fragmentation of liquid, thus changing the penetration height and the shape of the bow shock. A continuous interaction between the liquid penetration, bow shock, separation shock and liquid fragmentation is believed to be the mechanism responsible of the whipping phenomenon. The fragmentation of liquid exposed to Mach 6 air flow is also investigated. Experiments are conducted using water-filled balloons mounted on sharp and blunt leading edge supports. The water-filled balloons are exposed to Mach 6 air flow and high speed camera measurements are taken during the bursting of the balloon, to study the fragmentation of water. Shock patterns and flow topology are visualized by Schlieren photography

    Hydrodynamics studies in two- and three-phase bubble column

    Get PDF
    Master'sMASTER OF ENGINEERIN

    Non -Intrusive Characterization of a Dispersed, Bubbly, Axisymmetric Jet.

    Get PDF
    This study investigated the effects of bubble size and phase distribution on the liquid and bubble flow fields in a dispersed, bubbly axisymmetric jet. Of primary interest was the interaction of the bubbles with large-scale structures in the developing region of the jet. Measurements were made non-intrusively via Laser Doppler Velocimetry (LDV), Phase-Doppler Analysis (PDA) and video imaging techniques. Liquid Reynolds\u27 numbers were varied from approximately 6,000 to 18,000 while gas volume fraction ranged from 0 to 3%. Bubble sizes varied from approximately 600 mum to 1500 mum. Axial mean velocities and RMS fluctuations have been reported for the liquid phase. Axial and radial mean velocities and RMS fluctuations have been reported for the bubbles. Measurements have been made along the centerline and radially at downstream locations of x/Djet = 0.08, 4, 8, and 16. The effects of bubble size and phase distribution on the development of the axisymmetric shear layer as well as liquid phase and bubble velocity properties in general have been examined. These data have been put into perspective with respect to traditional two-phase flow parameters as well as previous experimental, analytical and computational works. Bubble/turbulence interaction was examined in the context of the turbulent kinetic energy spectrum and a critical wave number corresponding to bubble diameter was found above which turbulence was enhanced, and below which it was attenuated
    corecore