144 research outputs found

    Adaptive turn-prohibition routing algorithm for the networks of workstations

    Get PDF
    Deadlock occurrence is a critical problem for any computer network. Various solutions have been proposed over last two decades to solve problem of deadlocks in networks using different routing schemes, like up/down routing algorithm used in Myrinet switches. However, most of existing approaches for deadlock-free routing either try to eliminate any possibility of deadlock occurrence, which can result in putting extra restrictions on the routing in the networks or put no restrictions on routing, which leads to other approach namely deadlock recovery. In this thesis emphasis is on developing hybrid approach for routing in wormhole networks, wherein some prohibition is imposed on routing along with some kind of deadlock recovery. This adaptive approach allows changing the amount of routing restrictions depending on network traffic, thus providing a flexible method to achieve better network performance compared to the existing techniques. The main idea of the proposed method consists in the sequential selections of some turns, which are prohibited to be selected during routing. After each additional turn is added, the probability of deadlock occurrence decreases gradually. Cost formula is proposed to estimate cost of implementing both strategies in a network which is basis of proposed adaptive model

    Constructing virtual 5-dimensional tori out of lower-dimensional network cards

    Full text link
    [EN] In the Top500 and Graph500 lists of the last years, some of the most powerful systems implement a torus topology to interconnect themillions of computing nodes they include. Some of these torus networks are of five or six dimensions, which implies an additional difficulty as the node degree increases. In previous works, we proposed and evaluated the nD Twin (nDT) torus topology to virtually increase the dimensions a torus is able to implement. We showed that this new topology reduces the distances between nodes, increasing, therefore, global network performance. In this work, we present how to build a 5DT torus network using a specific commercial 6-port network card (EXTOLL card) to interconnect those nodes. We show, using the same number of cards, that the performance of the 5DT torus network we are able to implement using our proposal is higher than the performance of the 3D torus network for the same number of compute nodes.Spanish MINECO; European Commission, Grant/Award Number: TIN2015-66972-C5-1-R and TIN2015-66972-C5-2-R; JCCM, Grant/Award Number: PEII-2014-028-P; Spanish MICINN, Grant/Award Number: FJCI-2015-26080Andújar-Muñoz, FJ.; Villar, JA.; Sanchez Garcia, JL.; Alfaro Cortes, FJ.; Duato Marín, JF.; Fröning, H. (2017). Constructing virtual 5-dimensional tori out of lower-dimensional network cards. Concurrency and Computation Practice and Experience. 1-17. https://doi.org/10.1002/cpe.4361S11

    Energy efficient torus networks with on/off links

    Full text link
    [EN] Future exascale computing systems will require energy and performance efficient interconnection networks to respond to the high data movement demands of new applications, such as those coming from big-data and artificial intelligence areas. The network structure plays a major role in the overall interconnect performance, for this reason torus is a common topology used in the current largest supercomputers. There are several proposals to improve energy efficiency of interconnection networks. However, few works combine both energy and performance, and sometimes they are treated as opposed issues. In this paper, we try to determine which torus network configuration offers the best performance/energy ratio when high-radix switches are used to build the interconnect system. The performance/energy evaluation has been performed by trace-driven simulation under realistic scenarios, where several mixes of scientific applications share a supercomputer system and are scheduled to be executed with the available resources at each moment.This work has been supported by the Spanish MINECO and European Commission (FEDER funds) under project TIN2015-66972-05-1-R and project TIN2015-66972-05-2-R. Francisco J. Andujar is also funded by the Spanish MINECO under a Juan de la Cierva grant FJCI-2015-26080.Andújar, FJ.; Coll, S.; Alonso Díaz, M.; Martínez-Rubio, J.; López Rodríguez, PJ.; Sánchez, JL.; Alfaro, FJ.... (2019). Energy efficient torus networks with on/off links. Journal of Parallel and Distributed Computing. 130:37-49. https://doi.org/10.1016/j.jpdc.2019.03.015S374913

    Processor allocator for chip multiprocessors

    Full text link
    Chip MultiProcessor (CMP) architectures consisting of many cores connected through Network-on-Chip (NoC) are becoming main computing platforms for research and computer centers, and in the future for commercial solutions. In order to effectively use CMPs, operating system is an important factor and it should support a multiuser environment in which many parallel jobs are executed simultaneously. It is done by the processor management system of the operating system, which consists of two components: Job Scheduler (JS) and Processor Allocator (PA). The JS is responsible for job scheduling that deals with selection of the next job to be executed, while the task of the PA is processor allocation that selects a set of processors for the job selected by the JS. In this thesis, the PA architecture for the NoC-based CMP is explored. The idea of the PA hardware implementation and its integration on one die together with processing elements of CMP is presented. Such an approach requires the PA to be fast as well as area and energy efficient, because it is only a small component of the CMP. The architecture of hardware version of a PA is presented. The main factor of the structure is a type of processor allocation algorithm, employed inside. Thus, all important allocation techniques are intensively investigated and new schemes are proposed. All of them are compared using experimentation system. The PA driven by the described allocation techniques is synthesized on FPGA and crucial energy and area consumption together with performance parameters are extracted. The proposed CMP uses NoC as interconnection architecture. Therefore, all main NoC structures are studied and tested. Most important parameters such as topology, flow control and routing algorithms are presented and discussed. For the proposed NoC structures, an energy model is proposed and described. Finally, the synthesized PAs and NoCs are evaluated in a simulation system, where NoC-based CMP is created. The experimental environment took into consideration energy and traffic balance characteristics. As a result, the most efficient PA and NoC for CMP are presented

    Embedded dynamic programming networks for networks-on-chip

    Get PDF
    PhD ThesisRelentless technology downscaling and recent technological advancements in three dimensional integrated circuit (3D-IC) provide a promising prospect to realize heterogeneous system-on-chip (SoC) and homogeneous chip multiprocessor (CMP) based on the networks-onchip (NoCs) paradigm with augmented scalability, modularity and performance. In many cases in such systems, scheduling and managing communication resources are the major design and implementation challenges instead of the computing resources. Past research efforts were mainly focused on complex design-time or simple heuristic run-time approaches to deal with the on-chip network resource management with only local or partial information about the network. This could yield poor communication resource utilizations and amortize the benefits of the emerging technologies and design methods. Thus, the provision for efficient run-time resource management in large-scale on-chip systems becomes critical. This thesis proposes a design methodology for a novel run-time resource management infrastructure that can be realized efficiently using a distributed architecture, which closely couples with the distributed NoC infrastructure. The proposed infrastructure exploits the global information and status of the network to optimize and manage the on-chip communication resources at run-time. There are four major contributions in this thesis. First, it presents a novel deadlock detection method that utilizes run-time transitive closure (TC) computation to discover the existence of deadlock-equivalence sets, which imply loops of requests in NoCs. This detection scheme, TC-network, guarantees the discovery of all true-deadlocks without false alarms in contrast to state-of-the-art approximation and heuristic approaches. Second, it investigates the advantages of implementing future on-chip systems using three dimensional (3D) integration and presents the design, fabrication and testing results of a TC-network implemented in a fully stacked three-layer 3D architecture using a through-silicon via (TSV) complementary metal-oxide semiconductor (CMOS) technology. Testing results demonstrate the effectiveness of such a TC-network for deadlock detection with minimal computational delay in a large-scale network. Third, it introduces an adaptive strategy to effectively diffuse heat throughout the three dimensional network-on-chip (3D-NoC) geometry. This strategy employs a dynamic programming technique to select and optimize the direction of data manoeuvre in NoC. It leads to a tool, which is based on the accurate HotSpot thermal model and SystemC cycle accurate model, to simulate the thermal system and evaluate the proposed approach. Fourth, it presents a new dynamic programming-based run-time thermal management (DPRTM) system, including reactive and proactive schemes, to effectively diffuse heat throughout NoC-based CMPs by routing packets through the coolest paths, when the temperature does not exceed chip’s thermal limit. When the thermal limit is exceeded, throttling is employed to mitigate heat in the chip and DPRTM changes its course to avoid throttled paths and to minimize the impact of throttling on chip performance. This thesis enables a new avenue to explore a novel run-time resource management infrastructure for NoCs, in which new methodologies and concepts are proposed to enhance the on-chip networks for future large-scale 3D integration.Iraqi Ministry of Higher Education and Scientific Research (MOHESR)

    Analysing Mechanisms for Virtual Channel Management in Low-Diameter networks

    Full text link
    To interconnect their growing number of servers, current supercomputers and data centers are starting to adopt low-diameter networks, such as HyperX, Dragonfly and Dragonfly+. These emergent topologies require balancing the load over their links and finding suitable non-minimal routing mechanisms for them becomes particularly challenging. The Valiant load balancing scheme is a very popular choice for non-minimal routing. Evolved adaptive routing mechanisms implemented in real systems are based on this Valiant scheme. All these low-diameter networks are deadlock-prone when non-minimal routing is employed. Routing deadlocks occur when packets cannot progress due to cyclic dependencies. Therefore, developing efficient deadlock-free packet routing mechanisms is critical for the progress of these emergent networks. The routing function includes the routing algorithm for path selection and the buffers management policy that dictates how packets allocate the buffers of the switches on their paths. For the same routing algorithm, a different buffer management mechanism can lead to a very different performance. Moreover, certain mechanisms considered efficient for avoiding deadlocks, may still suffer from hard to pinpoint instabilities that make erratic the network response. This paper focuses on exploring the impact of these buffers management policies on the performance of current interconnection networks, showing a 90\% of performance drop if an incorrect buffers management policy is used. Moreover, this study not only characterizes some of these undesirable scenarios but also proposes practicable solutions

    On the design of a high-performance adaptive router for CC-NUMA multiprocessors

    Get PDF
    Copyright © 2003 IEEEThis work presents the design and evaluation of an adaptive packet router aimed at supporting CC-NUMA traffic. We exploit a simple and efficient packet injection mechanism to avoid deadlock, which leads to a fully adaptive routing by employing only three virtual channels. In addition, we selectively use output buffers for implementing the most utilized virtual paths in order to reduce head-of-line blocking. The careful implementation of these features has resulted in a good trade off between network performance and hardware cost. The outcome of this research is a High-Performance Adaptive Router (HPAR), which adequately balances the needs of parallel applications: minimal network latency at low loads and high throughput at heavy loads. The paper includes an evaluation process in which HPAR is compared with other adaptive routers using FIFO input buffering, with or without additional virtual channels to reduce head-of-line blocking. This evaluation contemplates both the VLSI costs of each router and their performance under synthetic and real application workloads. To make the comparison fair, all the routers use the same efficient deadlock avoidance mechanism. In all the experiments, HPAR exhibited the best response among all the routers tested. The throughput gains ranged from 10 percent to 40 percent in respect to its most direct rival, which employs more hardware resources. Other results shown that HPAR achieves up to 83 percent of its theoretical maximum throughput under random traffic and up to 70 percent when running real applications. Moreover, the observed packet latencies were comparable to those exhibited by simpler routers. Therefore, HPAR can be considered as a suitable candidate to implement packet interchange in next generations of CC-NUMA multiprocessors.Valentín Puente, José-Ángel Gregorio, Ramón Beivide, and Cruz Iz

    I/O embedding and broadcasting in star interconnection networks

    Full text link
    The issues of communication between a host or central controller and processors, in large interconnection networks are very important and have been studied in the past by several researchers. There is a plethora of problems that arise when processors are asked to exchange information on parallel computers on which processors are interconnected according to a specific topology. In robust networks, it is desirable at times to send (receive) data/control information to (from) all the processors in minimal time. This type of communication is commonly referred to as broadcasting. To speed up broadcasting in a given network without modifying its topology, certain processors called stations can be specified to act as relay agents. In this thesis, broadcasting issues in a star-based interconnection network are studied. The model adopted assumes all-port communication and wormhole switching mechanism. Initially, the problem treated is one of finding the minimum number of stations required to cover all the nodes in the star graph with i-adjacency. We consider 1-, 2-, and 3-adjacencies and determine the upper bound on the number of stations required to cover the nodes for each case. After deriving the number of stations, two algorithms are designed to broadcast the messages first from the host to stations, and then from stations to remaining nodes; In addition, a Binary-based Algorithm is designed to allow routing in the network by directly working on the binary labels assigned to the star graph. No look-up table is consulted during routing and minimum number of bits are used to represent a node label. At the end, the thesis sheds light on another algorithm for routing using parallel paths in the star network

    Performance analysis of wormhole routing in multicomputer interconnection networks

    Get PDF
    Perhaps the most critical component in determining the ultimate performance potential of a multicomputer is its interconnection network, the hardware fabric supporting communication among individual processors. The message latency and throughput of such a network are affected by many factors of which topology, switching method, routing algorithm and traffic load are the most significant. In this context, the present study focuses on a performance analysis of k-ary n-cube networks employing wormhole switching, virtual channels and adaptive routing, a scenario of especial interest to current research. This project aims to build upon earlier work in two main ways: constructing new analytical models for k-ary n-cubes, and comparing the performance merits of cubes of different dimensionality. To this end, some important topological properties of k-ary n-cubes are explored initially; in particular, expressions are derived to calculate the number of nodes at/within a given distance from a chosen centre. These results are important in their own right but their primary significance here is to assist in the construction of new and more realistic analytical models of wormhole-routed k-ary n-cubes. An accurate analytical model for wormhole-routed k-ary n-cubes with adaptive routing and uniform traffic is then developed, incorporating the use of virtual channels and the effect of locality in the traffic pattern. New models are constructed for wormhole k-ary n-cubes, with the ability to simulate behaviour under adaptive routing and non-uniform communication workloads, such as hotspot traffic, matrix-transpose and digit-reversal permutation patterns. The models are equally applicable to unidirectional and bidirectional k-ary n-cubes and are significantly more realistic than any in use up to now. With this level of accuracy, the effect of each important network parameter on the overall network performance can be investigated in a more comprehensive manner than before. Finally, k-ary n-cubes of different dimensionality are compared using the new models. The comparison takes account of various traffic patterns and implementation costs, using both pin-out and bisection bandwidth as metrics. Networks with both normal and pipelined channels are considered. While previous similar studies have only taken account of network channel costs, our model incorporates router costs as well thus generating more realistic results. In fact the results of this work differ markedly from those yielded by earlier studies which assumed deterministic routing and uniform traffic, illustrating the importance of using accurate models to conduct such analyses
    corecore