990 research outputs found

    Catalyst Acceleration for Gradient-Based Non-Convex Optimization

    Get PDF
    We introduce a generic scheme to solve nonconvex optimization problems using gradient-based algorithms originally designed for minimizing convex functions. Even though these methods may originally require convexity to operate, the proposed approach allows one to use them on weakly convex objectives, which covers a large class of non-convex functions typically appearing in machine learning and signal processing. In general, the scheme is guaranteed to produce a stationary point with a worst-case efficiency typical of first-order methods, and when the objective turns out to be convex, it automatically accelerates in the sense of Nesterov and achieves near-optimal convergence rate in function values. These properties are achieved without assuming any knowledge about the convexity of the objective, by automatically adapting to the unknown weak convexity constant. We conclude the paper by showing promising experimental results obtained by applying our approach to incremental algorithms such as SVRG and SAGA for sparse matrix factorization and for learning neural networks

    Beyond Convexity: Stochastic Quasi-Convex Optimization

    Full text link
    Stochastic convex optimization is a basic and well studied primitive in machine learning. It is well known that convex and Lipschitz functions can be minimized efficiently using Stochastic Gradient Descent (SGD). The Normalized Gradient Descent (NGD) algorithm, is an adaptation of Gradient Descent, which updates according to the direction of the gradients, rather than the gradients themselves. In this paper we analyze a stochastic version of NGD and prove its convergence to a global minimum for a wider class of functions: we require the functions to be quasi-convex and locally-Lipschitz. Quasi-convexity broadens the con- cept of unimodality to multidimensions and allows for certain types of saddle points, which are a known hurdle for first-order optimization methods such as gradient descent. Locally-Lipschitz functions are only required to be Lipschitz in a small region around the optimum. This assumption circumvents gradient explosion, which is another known hurdle for gradient descent variants. Interestingly, unlike the vanilla SGD algorithm, the stochastic normalized gradient descent algorithm provably requires a minimal minibatch size

    A continuous-time analysis of distributed stochastic gradient

    Full text link
    We analyze the effect of synchronization on distributed stochastic gradient algorithms. By exploiting an analogy with dynamical models of biological quorum sensing -- where synchronization between agents is induced through communication with a common signal -- we quantify how synchronization can significantly reduce the magnitude of the noise felt by the individual distributed agents and by their spatial mean. This noise reduction is in turn associated with a reduction in the smoothing of the loss function imposed by the stochastic gradient approximation. Through simulations on model non-convex objectives, we demonstrate that coupling can stabilize higher noise levels and improve convergence. We provide a convergence analysis for strongly convex functions by deriving a bound on the expected deviation of the spatial mean of the agents from the global minimizer for an algorithm based on quorum sensing, the same algorithm with momentum, and the Elastic Averaging SGD (EASGD) algorithm. We discuss extensions to new algorithms which allow each agent to broadcast its current measure of success and shape the collective computation accordingly. We supplement our theoretical analysis with numerical experiments on convolutional neural networks trained on the CIFAR-10 dataset, where we note a surprising regularizing property of EASGD even when applied to the non-distributed case. This observation suggests alternative second-order in-time algorithms for non-distributed optimization that are competitive with momentum methods.Comment: 9/14/19 : Final version, accepted for publication in Neural Computation. 4/7/19 : Significant edits: addition of simulations, deep network results, and revisions throughout. 12/28/18: Initial submissio
    corecore