870 research outputs found

    Clinical evaluation of stretchable and wearable inkjet-printed strain gauge sensor for respiratory rate monitoring at different body postures

    Get PDF
    Respiratory rate (RR) is a vital sign with continuous, convenient, and accurate measurement which is difficult and still under investigation. The present study investigates and evaluates a stretchable and wearable inkjet-printed strain gauge sensor (IJP) to estimate the RR continuously by detecting the respiratory volume change in the chest area. As the volume change could cause different strain changes at different body postures, this study aims to investigate the accuracy of the IJP RR sensor at selected postures. The evaluation was performed twice on 15 healthy male subjects (mean ± SD of age: 24 ± 1.22 years). The RR was simultaneously measured in breaths per minute (BPM) by the IJP RR sensor and a reference RR sensor (e-Health nasal thermal sensor) at each of the five body postures namely standing, sitting at 90°, Flower’s position at 45°, supine, and right lateral recumbent. There was no significant difference in measured RR between IJP and reference sensors, between two trials, or between different body postures (all p \u3e 0.05). Body posture did not have any significant effect on the difference of RR measurements between IJP and the reference sensors (difference \u3c 0.01 BPM for each measurement in both trials). The IJP sensor could accurately measure the RR at different body postures, which makes it a promising, simple, and user-friendly option for clinical and daily uses

    Transfer function for vital infrasound pressures between the carotid artery and the tympanic membrane

    Get PDF
    While occupational injury is associated with numerous individual and work-related risk factors, including long working hours and short sleep duration, the complex mechanisms causing such injuries are not yet fully understood. The relationship between the infrasound pressures of the tympanic membrane [ear canal pressure (ECP)], detected using an earplug embedded with a low-frequency microphone, and the carotid artery [carotid artery pressure (CAP)], detected using a stethoscope fitted with the same microphone, can be quantitatively characterized using systems analysis. The transfer functions of 40 normal workers (19 to 57 years old) were characterized, involving the analysis of 446 data points. The ECP waveform exhibits a pulsatile character with a slow respiratory component, which is superimposed on a biphasic recording that is synchronous with the cardiac cycle. The respiratory ECP waveform correlates with the instantaneous heart rate. The results also revealed that various fatigue-related risk factors may affect the mean magnitudes of the measured pressures and the delay transfer functions between CAP and ECP in the study population; these factors include systolic blood pressure, salivary amylase activity, age, sleep duration, postural changes, chronic fatigue, and pulse rate. [https://doi.org/10.1121/1.4773270]ArticleJOURNAL OF THE ACOUSTICAL SOCIETY OF AMERICA. 133(2):1169-1186 (2013)journal articl

    Adaptation to prolonged bedrest in man: A compendium of research

    Get PDF
    A compilation of major studies that describe the clinical observations and elucidate the physiological mechanisms of the adaptive process of man undergoing prolonged bed rest is presented. Additional studies are included that provide background information in the form of reviews or summaries of the process. Wherever possible a detailed annotation is provided under the subheadings: (1) purpose, (2) procedure and methods, (3) results, and (4) conclusions. Additional references are provided in a selected bibliography

    Cardiac Strain during Upright Cycle Ergometry in Adolescent Males

    Get PDF
    Little evidence exists with regard to changes in cardiac strain that occur during submaximal exercise in young males. The aims of the study were to evaluate the changes that occur in longitudinal (L), radial (R), and endocardial circumferential (EC) strain during submaximal upright cycle ergometry and to examine the test-retest reproducibility of these measurements. Fourteen recreationally active, adolescent (age: 17.9 ± 0.7 years) males volunteered for the study. All subjects underwent an incremental (40 W) submaximal cycle ergometer test. L, R, and EC strain values were obtained using speckle tracking, from two-dimensional B-mode images of the left ventricle (LV) during rest and the initial stages of submaximal exercise (40 and 80 W). The average of 6 LV segments was used to determine both peak wall deformation (%) and the time to peak deformation (ms). There was a statistically (P < 0.05) significant increase from rest to submaximal exercise for peak deformation for L, R, and EC strain. There was a statistically significant (P < 0.05) decrease from rest to submaximal exercise for time to peak for L and R and EC strain and between submaximal workloads for time to peak for L strain and EC strain. Coefficients of variation demonstrated reproducibility for upright strain and strain rate measurements similar to published supine measurements. This study has demonstrated that changes in left ventricular wall deformation (L, R and EC strain) that occur during the transition from rest to submaximal exercise can be reliably measured and confirm that a healthy LV has a hyperdynamic response to exercise

    Heart-Lung Interactions in Aerospace Medicine

    Get PDF
    Few of the heart-lung interactions that are discussed have been studied in any detail in the aerospace environment, but is seems that many such interactions must occur in the setting of altered accelerative loadings and pressure breathing. That few investigations are in progress suggests that clinical and academic laboratory investigators and aerospace organizations are further apart than during the pioneering work on pressure breathing and acceleration tolerance in the 1940s. The purpose is to reintroduce some of the perennial problems of aviation physiology as well as some newer aerospace concerns that may be of interest. Many possible heart-lung interactions are pondered, by necessity often drawing on data from within the aviation field, collected before the modern understanding of these interactions developed, or on recent laboratory data that may not be strictly applicable. In the field of zero-gravity effects, speculation inevitably outruns the sparse available data

    Transfer function for vital infrasound pressures between the carotid artery and the tympanic membrane

    Get PDF
    While occupational injury is associated with numerous individual and work-related risk factors, including long working hours and short sleep duration, the complex mechanisms causing such injuries are not yet fully understood. The relationship between the infrasound pressures of the tympanic membrane [ear canal pressure (ECP)], detected using an earplug embedded with a low-frequency microphone, and the carotid artery [carotid artery pressure (CAP)], detected using a stethoscope fitted with the same microphone, can be quantitatively characterized using systems analysis. The transfer functions of 40 normal workers (19 to 57 years old) were characterized, involving the analysis of 446 data points. The ECP waveform exhibits a pulsatile character with a slow respiratory component, which is superimposed on a biphasic recording that is synchronous with the cardiac cycle. The respiratory ECP waveform correlates with the instantaneous heart rate. The results also revealed that various fatigue-related risk factors may affect the mean magnitudes of the measured pressures and the delay transfer functions between CAP and ECP in the study population; these factors include systolic blood pressure, salivary amylase activity, age, sleep duration, postural changes, chronic fatigue, and pulse rate. [http://dx.doi.org/10.1121/1.4773270
    • …
    corecore