57 research outputs found

    A Macroscopic Study of Network Security Threats at the Organizational Level.

    Full text link
    Defenders of today's network are confronted with a large number of malicious activities such as spam, malware, and denial-of-service attacks. Although many studies have been performed on how to mitigate security threats, the interaction between attackers and defenders is like a game of Whac-a-Mole, in which the security community is chasing after attackers rather than helping defenders to build systematic defensive solutions. As a complement to these studies that focus on attackers or end hosts, this thesis studies security threats from the perspective of the organization, the central authority that manages and defends a group of end hosts. This perspective provides a balanced position to understand security problems and to deploy and evaluate defensive solutions. This thesis explores how a macroscopic view of network security from an organization's perspective can be formed to help measure, understand, and mitigate security threats. To realize this goal, we bring together a broad collection of reputation blacklists. We first measure the properties of the malicious sources identified by these blacklists and their impact on an organization. We then aggregate the malicious sources to Internet organizations and characterize the maliciousness of organizations and their evolution over a period of two and half years. Next, we aim to understand the cause of different maliciousness levels in different organizations. By examining the relationship between eight security mismanagement symptoms and the maliciousness of organizations, we find a strong positive correlation between mismanagement and maliciousness. Lastly, motivated by the observation that there are organizations that have a significant fraction of their IP addresses involved in malicious activities, we evaluate the tradeoff of one type of mitigation solution at the organization level --- network takedowns.PhDComputer Science and EngineeringUniversity of Michigan, Horace H. Rackham School of Graduate Studieshttp://deepblue.lib.umich.edu/bitstream/2027.42/116714/1/jingzj_1.pd

    Detecting malware and cyber attacks using ISP data

    Get PDF

    Network entity characterization and attack prediction

    Get PDF
    The devastating effects of cyber-attacks, highlight the need for novel attack detection and prevention techniques. Over the last years, considerable work has been done in the areas of attack detection as well as in collaborative defense. However, an analysis of the state of the art suggests that many challenges exist in prioritizing alert data and in studying the relation between a recently discovered attack and the probability of it occurring again. In this article, we propose a system that is intended for characterizing network entities and the likelihood that they will behave maliciously in the future. Our system, namely Network Entity Reputation Database System (NERDS), takes into account all the available information regarding a network entity (e. g. IP address) to calculate the probability that it will act maliciously. The latter part is achieved via the utilization of machine learning. Our experimental results show that it is indeed possible to precisely estimate the probability of future attacks from each entity using information about its previous malicious behavior and other characteristics. Ranking the entities by this probability has practical applications in alert prioritization, assembly of highly effective blacklists of a limited length and other use cases.Comment: 30 pages, 8 figure

    Command & Control: Understanding, Denying and Detecting - A review of malware C2 techniques, detection and defences

    Full text link
    In this survey, we first briefly review the current state of cyber attacks, highlighting significant recent changes in how and why such attacks are performed. We then investigate the mechanics of malware command and control (C2) establishment: we provide a comprehensive review of the techniques used by attackers to set up such a channel and to hide its presence from the attacked parties and the security tools they use. We then switch to the defensive side of the problem, and review approaches that have been proposed for the detection and disruption of C2 channels. We also map such techniques to widely-adopted security controls, emphasizing gaps or limitations (and success stories) in current best practices.Comment: Work commissioned by CPNI, available at c2report.org. 38 pages. Listing abstract compressed from version appearing in repor

    Blacklist Ecosystem Analysis: Spanning Jan 2012 to Jun 2014

    Get PDF

    Early detection of spam-related activity

    Get PDF
    Spam, the distribution of unsolicited bulk email, is a big security threat on the Internet. Recent studies show approximately 70-90% of the worldwide email traffic—about 70 billion messages a day—is spam. Spam consumes resources on the network and at mail servers, and it is also used to launch other attacks on users, such as distributing malware or phishing. Spammers have increased their virulence and resilience by sending spam from large collections of compromised machines (“botnets”). Spammers also make heavy use of URLs and domains to direct victims to point-of-sale Web sites, and miscreants register large number of domains to evade blacklisting efforts. To mitigate the threat of spam, users and network administrators need proactive techniques to distinguish spammers from legitimate senders and to take down online spam-advertised sites. In this dissertation, we focus on characterizing spam-related activities and developing systems to detect them early. Our work builds on the observation that spammers need to acquire attack agility to be profitable, which presents differences in how spammers and legitimate users interact with Internet services and exposes detectable during early period of attack. We examine several important components across the spam life cycle, including spam dissemination that aims to reach users' inboxes, the hosting process during which spammers set DNS servers and Web servers, and the naming process to acquire domain names via registration services. We first develop a new spam-detection system based on network-level features of spamming bots. These lightweight features allow the system to scale better and to be more robust. Next, we analyze DNS resource records and lookups from top-level domain servers during the initial stage after domain registrations, which provides a global view across the Internet to characterize spam hosting infrastructure. We further examine the domain registration process and present the unique registration behavior of spammers. Finally, we build an early-warning system to identify spammer domains at time-of-registration rather than later at time-of-use. We have demonstrated that our detection systems are effective by using real-world datasets. Our work has also had practical impact. Some of the network-level features that we identified have since been incorporated into spam filtering products at Yahoo! and McAfee, and our work on detecting spammer domains at time-of-registration has directly influenced new projects at Verisign to investigate domain registrations.Ph.D

    Protecting Networked Systems from Malware Threats

    Get PDF
    Currently, networks and networked systems are essential media for us to communicate with other people, access resources, and share information. Reading (or sending) emails, navigating web sites, and uploading pictures to social medias are common behaviors using networks. Besides these, networks and networked systems are used to store or access sensitive or private information. In addition, major economic activities, such as buying food and selling used cars, can also be operated with networks. Likewise, we live with networks and networked systems. As network usages are increasing and popular, people face the problems of net- work attacks. Attackers on the networks can steal people’s private information, mislead people to pay money for fake products, and threaten people, who operate online commercial sites, by bothering their services. There are much more diverse types of network attacks that torture many people using networks, and the situation is still serious. The proposal in this dissertation starts from the following two research questions: (i) what kind of network attack is prevalent and how we can investigate it and (ii) how we can protect our networks and networked systems from these attacks. Therefore, this dissertation spans two main areas to provide answers for each question. First, we analyze the behaviors and characteristics of large-scale bot infected hosts, and it provides us new findings of network malware and new insights that are useful to detect (or defeat) recent network threats. To do this, we investigate the characteristics of victims infected by recent popular botnet - Conficker, MegaD, and Srizbi. In addition, we propose a method to detect these bots by correlating network and host features. Second, we suggest new frameworks to make our networks secure based on the new network technology of Software Defined Networking (SDN). Currently, SDN technology is considered as a future major network trend, and it can dynamically program networks as we want. Our suggested frameworks for SDN can be used to devise network security applications easily, and we also provide an approach to make SDN technology secure

    REGULATING MONEY LAUNDERING IN DEVELOPING COUNTRIES:A CRITICAL ANALYSIS OF SOUTH AFRICA’S INCORPORATION AND IMPLEMENTATION OF THE GLOBAL FATF STANDARDS

    Get PDF
    This work uses the competing theories of regulation and ‘policy transfer’ analysis to examine why and how the global Financial Action Task Force (FATF) regime against money laundering emerged and was introduced in developing countries, particularly South Africa. It also examines the regime’s implementation efforts within South Africa’s banking sector. The popular explanation from the FATF is that this regime was introduced to help in dealing with issues of crime and protecting the financial system against abuse by criminals. The inquiry unfolds in the context of South Africa’s dual socio-economic conditions that straddle the developed-developing country divide. Findings of this study are that the global FATF regime did not primarily emerge for the proclaimed purposes of detecting or combating crime or to protect the global financial system from abuse by criminals. It may have instead emerged to deal with issues of competition, particularly regulatory and tax arbitrage. Evidence also clearly shows that the regime was imposed on many developing and small countries through the FATF’s strategies of naming, shaming and blacklisting those it labelled as Non-Cooperating Countries and Territories at the turn of the 21st century. The spread of the regime throughout the world at all costs appears to point towards a concerted drive to use or manipulate public sentiment about crime and to stigmatise mainly small and developing countries to the benefit of the narrow political and economic interests of some Western countries. Regarding the introduction of the FATF standards into South Africa, evidence shows that although the country was not blacklisted and was eventually made a full member of the FATF, the regime was, nevertheless imposed. In examining the imposition of these standards in South Africa, we found some of their crucial aspects were not designed for implementation under the socio-economic conditions of underdevelopment. Evidence also shows that they are not effective in detecting and combating crime despite the great, yet uncalculated, cost of compliance that they impose on society
    corecore