242 research outputs found

    MaMaDroid: Detecting Android malware by building markov chains of behavioral models (extended version)

    Get PDF
    As Android has become increasingly popular, so has malware targeting it, thus motivating the research community to propose different detection techniques. However, the constant evolution of the Android ecosystem, and of malware itself, makes it hard to design robust tools that can operate for long periods of time without the need for modifications or costly re-training. Aiming to address this issue, we set to detect malware from a behavioral point of view, modeled as the sequence of abstracted API calls. We introduce MaMaDroid, a static-analysis based system that abstracts app’s API calls to their class, package, or family, and builds a model from their sequences obtained from the call graph of an app as Markov chains. This ensures that the model is more resilient to API changes and the features set is of manageable size. We evaluate MaMaDroid using a dataset of 8.5K benign and 35.5K malicious apps collected over a period of six years, showing that it effectively detects malware (with up to 0.99 F-measure) and keeps its detection capabilities for long periods of time (up to 0.87 F-measure two years after training). We also show that MaMaDroid remarkably overperforms DroidAPIMiner, a state-of-the-art detection system that relies on the frequency of (raw) API calls. Aiming to assess whether MaMaDroid’s effectiveness mainly stems from the API abstraction or from the sequencing modeling, we also evaluate a variant of it that uses frequency (instead of sequences), of abstracted API calls. We find that it is not as accurate, failing to capture maliciousness when trained on malware samples that include API calls that are equally or more frequently used by benign apps

    Techniques for advanced android malware triage

    Get PDF
    Mención Internacional en el título de doctorAndroid is the leading operating system in smartphones with a big difference. Statistics show that 88% of all smartphones sold to end users in the second quarter of 2018 were phones with the Android OS. Regardless of the operating systems which are running on smartphones, most of the functionalities of these devices are offered through applications. There are currently over 2 million apps only on the official Google store, known as Google Play. This huge market with billions of users is tempting for attackers to develop and distribute their malicious apps (or malware). Mobile malware has raised explosively since 2009. Symantec reported an increase of 54% in the new mobile malware variants in 2017 as compared to the previous year. Additionally, more incentive has been provided for profit-driven malware by the growth of black markets. This rise has happened for Android malware as well since only 20% of devices are running the newest major version of Android OS based on Symantec report in 2018. Android continued to be the most targeted platform with the biggest number of attacks in 2015. After that year, attacks against the Android platform slowed for the first time as attackers were faced with improved security architectures though Android is still the main appealing target OS for attackers. Moreover, advanced types of Android malware are found which make use of extensive anit-analysis techniques to evade static or dynamic analysis. To address the security and privacy concerns of complex Android malware, this dissertation focuses on three main objectives. First of all, we propose a light-weight yet efficient method to identify risky Android applications. Next, we present a precise approach to characterize Android malware based on their malicious behavior. Finally, we propose an adaptive learning system to address the security concerns of obfuscation in Android malware. Identifying potentially dangerous and risky applications is an important step in Android malware analysis. To this end, we develop a triage system to rank applications based on their potential risk. Our approach, called TriFlow, relies on static features which are quick to obtain. TriFlow combines a probabilistic model to predict the existence of information flows with a metric of how significant a flow is in benign and malicious apps. Based on this, TriFlow provides a score for each application that can be used to prioritize analysis. It also provides the analysts with an explanatory report of the associated risk. Our tool can also be used as a complement with computationally expensive static and dynamic analysis tools. Another important step towards Android malware analysis lies in their accurate characterization. Labeling Android malware is challenging yet crucially important, as it helps to identify upcoming malware samples and threats. A key challenge is that different researchers and anti-virus vendors assign labels using their own criteria, and it is not known to what extent these labels are aligned with the apps’ real behavior. Based on this, we propose a new behavioral characterization method for Android apps based on their extracted information flows. As information flows can be used to track why and how apps use specific pieces of information, a flowbased characterization provides a relatively easy-to-interpret summary of the malware sample’s behavior. Not all Android malware are easy to analyze due to advanced and easyto-apply anti-analysis techniques that are available nowadays. Obfuscation is the most common anti-analysis technique that Android malware use to evade detection. Obfuscation techniques modify an app’s source (or machine) code in order to make it more difficult to analyze. This is typically applied to protect intellectual property in benign apps, or to hinder the process of extracting actionable information in the case of malware. Since malware analysis often requires considerable resource investment, detecting the particular obfuscation technique used may contribute to apply the right analysis tools, thus leading to some savings. Therefore, we propose AndrODet, a mechanism to detect three popular types of obfuscation in Android applications, namely identifier renaming, string encryption, and control flow obfuscation. AndrODet leverages online learning techniques, thus being suitable for resource-limited environments that need to operate in a continuous manner. We compare our results with a batch learning algorithm using a dataset of 34,962 apps from both malware and benign apps. Experimental results show that online learning approaches are not only able to compete with batch learning methods in terms of accuracy, but they also save significant amount of time and computational resources. Finally, we present a number of open research directions based on the outcome of this thesis.Android es el sistema operativo líder en teléfonos inteligentes (también denominados con la palabra inglesa smartphones), con una gran diferencia con respecto al resto de competidores. Las estadísticas muestran que el 88% de todos los smartphones vendidos a usuarios finales en el segundo trimestre de 2018 fueron teléfonos con sistema operativo Android. Independientemente de su sistema operativo, la mayoría de las funcionalidades de estos dispositivos se ofrecen a través de aplicaciones. Actualmente hay más de 2 millones de aplicaciones solo en la tienda oficial de Google, conocida como Google Play. Este enorme mercado con miles de millones de usuarios es tentador para los atacantes, que buscan distribuir sus aplicaciones malintencionadas (o malware). El malware para dispositivos móviles ha aumentado de forma exponencial desde 2009. Symantec ha detectado un aumento del 54% en las nuevas variantes de malware para dispositivos móviles en 2017 en comparación con el año anterior. Además, el crecimiento del mercado negro (es decir, plataformas no oficiales de descargas de aplicaciones) supone un incentivo para los programas maliciosos con fines lucrativos. Este aumento también ha ocurrido en el malware de Android, aprovechando la circunstancia de que solo el 20% de los dispositivos ejecutan la versión mas reciente del sistema operativo Android, de acuerdo con el informe de Symantec en 2018. De hecho, Android ha sido la plataforma que ha centrado los esfuerzos de los atacantes desde 2015, aunque los ataques decayeron ligeramente tras ese año debido a las mejoras de seguridad incorporadas en el sistema operativo. En todo caso, existen formas avanzadas de malware para Android que hacen uso de técnicas sofisticadas para evadir el análisis estático o dinámico. Para abordar los problemas de seguridad y privacidad que causa el malware en Android, esta Tesis se centra en tres objetivos principales. En primer lugar, se propone un método ligero y eficiente para identificar aplicaciones de Android que pueden suponer un riesgo. Por otra parte, se presenta un mecanismo para la caracterización del malware atendiendo a su comportamiento. Finalmente, se propone un mecanismo basado en aprendizaje adaptativo para la detección de algunos tipos de ofuscación que son empleados habitualmente en las aplicaciones maliciosas. Identificar aplicaciones potencialmente peligrosas y riesgosas es un paso importante en el análisis de malware de Android. Con este fin, en esta Tesis se desarrolla un mecanismo de clasificación (llamado TriFlow) que ordena las aplicaciones según su riesgo potencial. La aproximación se basa en características estáticas que se obtienen rápidamente, siendo de especial interés los flujos de información. Un flujo de información existe cuando un cierto dato es recibido o producido mediante una cierta función o llamada al sistema, y atraviesa la lógica de la aplicación hasta que llega a otra función. Así, TriFlow combina un modelo probabilístico para predecir la existencia de un flujo con una métrica de lo habitual que es encontrarlo en aplicaciones benignas y maliciosas. Con ello, TriFlow proporciona una puntuación para cada aplicación que puede utilizarse para priorizar su análisis. Al mismo tiempo, proporciona a los analistas un informe explicativo de las causas que motivan dicha valoración. Así, esta herramienta se puede utilizar como complemento a otras técnicas de análisis estático y dinámico que son mucho más costosas desde el punto de vista computacional. Otro paso importante hacia el análisis de malware de Android radica en caracterizar su comportamiento. Etiquetar el malware de Android es un desafío de crucial importancia, ya que ayuda a identificar las próximas muestras y amenazas de malware. Una cuestión relevante es que los diferentes investigadores y proveedores de antivirus asignan etiquetas utilizando sus propios criterios, de modo no se sabe en qué medida estas etiquetas están en línea con el comportamiento real de las aplicaciones. Sobre esta base, en esta Tesis se propone un nuevo método de caracterización de comportamiento para las aplicaciones de Android en función de sus flujos de información. Como dichos flujos se pueden usar para estudiar el uso de cada dato por parte de una aplicación, permiten proporcionar un resumen relativamente sencillo del comportamiento de una determinada muestra de malware. A pesar de la utilidad de las técnicas de análisis descritas, no todos los programas maliciosos de Android son fáciles de analizar debido al uso de técnicas anti-análisis que están disponibles en la actualidad. Entre ellas, la ofuscación es la técnica más común que se utiliza en el malware de Android para evadir la detección. Dicha técnica modifica el código de una aplicación para que sea más difícil de entender y analizar. Esto se suele aplicar para proteger la propiedad intelectual en aplicaciones benignas o para dificultar la obtención de pistas sobre su funcionamiento en el caso del malware. Dado que el análisis de malware a menudo requiere una inversión considerable de recursos, detectar la técnica de ofuscación que se ha utilizado en un caso particular puede contribuir a utilizar herramientas de análisis adecuadas, contribuyendo así a un cierto ahorro de recursos. Así, en esta Tesis se propone AndrODet, un mecanismo para detectar tres tipos populares de ofuscación, a saber, el renombrado de identificadores, cifrado de cadenas de texto y la modificación del flujo de control de la aplicación. AndrODet se basa en técnicas de aprendizaje automático en línea (online machine learning), por lo que es adecuado para entornos con recursos limitados que necesitan operar de forma continua, sin interrupción. Para medir su eficacia respecto de las técnicas de aprendizaje automático tradicionales, se comparan los resultados con un algoritmo de aprendizaje por lotes (batch learning) utilizando un dataset de 34.962 aplicaciones de malware y benignas. Los resultados experimentales muestran que el enfoque de aprendizaje en línea no solo es capaz de competir con el basado en lotes en términos de precisión, sino que también ahorra una gran cantidad de tiempo y recursos computacionales. Tras la exposición de las contribuciones anteriormente mencionadas, esta Tesis concluye con la identificación de una serie de líneas abiertas de investigación con el fin de alentar el desarrollo de trabajos futuros en esta dirección.Omid Mirzaei is a Ph.D. candidate in the Computer Security Lab (COSEC) at the Department of Computer Science and Engineering of Universidad Carlos III de Madrid (UC3M). His Ph.D. is funded by the Community of Madrid and the European Union through the research project CIBERDINE (Ref. S2013/ICE-3095).Programa Oficial de Doctorado en Ciencia y Tecnología InformáticaPresidente: Gregorio Martínez Pérez.- Secretario: Pedro Peris López.- Vocal: Pablo Picazo Sánche

    Effectiveness of Opcode ngrams for Detection of Multi Family Android Malware

    Get PDF
    With the wide diffusion of smartphones and their usage in a plethora of processes and activities, these devices have been handling an increasing variety of sensitive resources. Attackers are hence producing a large number of malware applications for Android (the most spread mobile platform), often by slightly modifying existing applications, which results in malware being organized in families. Some works in the literature showed that opcodes are informative for detecting malware, not only in the Android platform. In this paper, we investigate if frequencies of ngrams of opcodes are effective in detecting Android malware and if there is some significant malware family for which they are more or less effective. To this end, we designed a method based on state-of-the-art classifiers applied to frequencies of opcodes ngrams. Then, we experimentally evaluated it on a recent dataset composed of 11120 applications, 5560 of which are malware belonging to several different families. Results show that an accuracy of 97% can be obtained on the average, whereas perfect detection rate is achieved for more than one malware family
    • …
    corecore