2,063 research outputs found

    Malware detection techniques for mobile devices

    Full text link
    Mobile devices have become very popular nowadays, due to its portability and high performance, a mobile device became a must device for persons using information and communication technologies. In addition to hardware rapid evolution, mobile applications are also increasing in their complexity and performance to cover most needs of their users. Both software and hardware design focused on increasing performance and the working hours of a mobile device. Different mobile operating systems are being used today with different platforms and different market shares. Like all information systems, mobile systems are prone to malware attacks. Due to the personality feature of mobile devices, malware detection is very important and is a must tool in each device to protect private data and mitigate attacks. In this paper, analysis of different malware detection techniques used for mobile operating systems is provides. The focus of the analysis will be on the to two competing mobile operating systems - Android and iOS. Finally, an assessment of each technique and a summary of its advantages and disadvantages is provided. The aim of the work is to establish a basis for developing a mobile malware detection tool based on user profiling.Comment: 11 pages, 6 figure

    Selecting Root Exploit Features Using Flying Animal-Inspired Decision

    Get PDF
    Malware is an application that executes malicious activities to a computer system, including mobile devices. Root exploit brings more damages among all types of malware because it is able to run in stealthy mode. It compromises the nucleus of the operating system known as kernel to bypass the Android security mechanisms. Once it attacks and resides in the kernel, it is able to install other possible types of malware to the Android devices. In order to detect root exploit, it is important to investigate its features to assist machine learning to predict it accurately. This study proposes flying animal-inspired (1) bat, 2) firefly, and 3) bee) methods to search automatically the exclusive features, then utilizes these flying animal-inspired decision features to improve the machine learning prediction. Furthermore, a boosting method (Adaboost) boosts the multilayer perceptron (MLP) potential to a stronger classification. The evaluation jotted the best result is from bee search, which recorded 91.48 percent in accuracy, 82.2 percent in true positive rate, and 0.1 percent false positive rate

    Detection and Prevention of Android Malware Attempting to Root the Device

    Get PDF
    Every year, malefactors continue to target the Android operating system. Malware which root the device pose the greatest threat to users. The attacker could steal stored passwords and contact lists or gain remote control of the phone. Android users require a system to detect the operation of malware trying to root the phone. This research aims to detect the Exploid, RageAgainstTheCage, and Gingerbreak exploits on Android operating systems. Reverse-engineering 21 malware samples lead to the discovery of two critical paths in the Android Linux kernel, wherein attackers can use malware to root the system. By placing sensors inside the critical paths, the research detected all 379 malware samples trying the root the system. Moreover, the experiment tested 16,577 benign applications from the Official Android Market and third party Chinese markets which triggered zero false positive results. Unlike static signature detection at the application level, this research provides dynamic detection at the kernel level. The sensors reside in-line with the kernel\u27s source code, monitoring network sockets and process creation. Additionally, the research demonstrates the steps required to reverse engineer Android malware in order to discover future critical paths. Using the kernel resources, the two sensors demonstrate efficient asymptotic time and space real-world monitoring. Furthermore, the sensors are immune to obfuscation techniques such as repackaging

    Keeping Context In Mind: Automating Mobile App Access Control with User Interface Inspection

    Full text link
    Recent studies observe that app foreground is the most striking component that influences the access control decisions in mobile platform, as users tend to deny permission requests lacking visible evidence. However, none of the existing permission models provides a systematic approach that can automatically answer the question: Is the resource access indicated by app foreground? In this work, we present the design, implementation, and evaluation of COSMOS, a context-aware mediation system that bridges the semantic gap between foreground interaction and background access, in order to protect system integrity and user privacy. Specifically, COSMOS learns from a large set of apps with similar functionalities and user interfaces to construct generic models that detect the outliers at runtime. It can be further customized to satisfy specific user privacy preference by continuously evolving with user decisions. Experiments show that COSMOS achieves both high precision and high recall in detecting malicious requests. We also demonstrate the effectiveness of COSMOS in capturing specific user preferences using the decisions collected from 24 users and illustrate that COSMOS can be easily deployed on smartphones as a real-time guard with a very low performance overhead.Comment: Accepted for publication in IEEE INFOCOM'201

    Enter Sandbox: Android Sandbox Comparison

    Full text link
    Expecting the shipment of 1 billion Android devices in 2017, cyber criminals have naturally extended their vicious activities towards Google's mobile operating system. With an estimated number of 700 new Android applications released every day, keeping control over malware is an increasingly challenging task. In recent years, a vast number of static and dynamic code analysis platforms for analyzing Android applications and making decision regarding their maliciousness have been introduced in academia and in the commercial world. These platforms differ heavily in terms of feature support and application properties being analyzed. In this paper, we give an overview of the state-of-the-art dynamic code analysis platforms for Android and evaluate their effectiveness with samples from known malware corpora as well as known Android bugs like Master Key. Our results indicate a low level of diversity in analysis platforms resulting from code reuse that leaves the evaluated systems vulnerable to evasion. Furthermore the Master Key bugs could be exploited by malware to hide malicious behavior from the sandboxes.Comment: In Proceedings of the Third Workshop on Mobile Security Technologies (MoST) 2014 (http://arxiv.org/abs/1410.6674
    • …
    corecore