620 research outputs found

    Catastrophic Optical Damage in High-Power AlGaInP Diode Lasers

    Get PDF
    High-power red-emitting lasers with high reliability are strongly desired by applications like photodynamic therapy. Semiconductor lasers based on AlGaInP have emerged as the best candidates in this spectral range. However, compared to infrared emitters, high-power performance is still limited by major degradation effects, especially by catastrophic optical damage (COD). An innovative combination of concepts, namely microphotoluminescence (µPL) mapping, focused ion beam (FIB) microscopy, micro-Raman spectroscopy, and high-speed thermal imaging has been employed to reveal the physics behind COD, its related temperature dynamics, as well as associated defect and near-field patterns. µPL showed that COD-related defects are composed of highly nonradiative complex dislocations, which start from the output facet and propagate deep inside the cavity. Moreover, FIB analysis confirmed that those dark line defects are confined to the active region, including the quantum wells and partially the waveguide. In addition, the COD dependence on temperature and power was analyzed in detail by micro-Raman spectroscopy and thermal imaging. For AlGaInP lasers in the whole spectral range of 635 to 650 nm, it was revealed that absorption of stimulated photons at the laser output facet is the major source of facet heating, and that a critical facet temperature must be reached in order for COD to occur. A linear relationship between facet temperature and near-field intensity has also been established. This understanding of the semiconductor physics behind COD is a key element for further improvement in output power of AlGaInP diode lasers

    Contribution à l'étude de la fiabilité des technologies avancées en environnement radiatif atmosphérique et spatial par des méthodes optiques

    Get PDF
    Ce travail présente la mise en œuvre du test par faisceau laser TPA pour l étude de la sensibilité au phénomène SEB dans les diodes schottky en carbure de silicium. Le contexte de l étude est décrit par un état de l art du SEB sur les MOSFETs et Diodes en Silicium et en carbure de silicium. Une étude technologique et structurelle des composants en SiC a permis de dégager les avantages du SiC par rapport au Si conventionnel et a permis d analyser les dégâts causés par le faisceau TPA. L utilisation du montage expérimental sur la plateforme ATLAS dédié spécifiquement au test de matériaux à grand gap a permis de mettre en place une méthodologie de test sur des diodes schottky en SiC. L efficacité de cette méthodologie est prouvée par l obtention de résultats expérimentaux très originaux. La susceptibilité au SEB induit par la technique laser TPA a été démontrée. Les mesures SOA ont permis d évaluer la robustesse des diodes schottky SiC face aux événements singuliers. Une modélisation analytique a été menée afin de comprendre la cause du mécanisme du SEB et la localisation des défauts induits par le faisceau TPA.This work presents the implementation of the TPA laser beam testing to study the SEB phenomenon in silicon carbide Schottky diodes. The context of the study is described by a state of the art of SEB on Si and SiC MOSFETs and Diodes. Technological and structural study of SiC components has identified the benefits of SiC compared to conventional Si and permits to analyze the damage caused by the TPA beam. Using the experimental setup of the ATLAS platform dedicated specifically to test large gap materials has set up a test methodology on SiC Schottky diodes. The effectiveness of this methodology is demonstrated by obtaining original experimental results. Susceptibility to SEB induced by TPA laser technique has been demonstrated. SOA measurements were used to assess the robustness of SiC Schottky diodes to single event effects.An analytical modeling was conducted to understand the cause of the SEB mechanism and the location of defects induced by the TPA beam.BORDEAUX1-Bib.electronique (335229901) / SudocSudocFranceF

    Development of III-nitride bipolar devices: avalanche photodiodes, laser diodes, and double-heterojunction bipolar transistors

    Get PDF
    This dissertation describes the development of III-nitride (III-N) bipolar devices for optoelectronic and electronic applications. Research mainly involves device design, fabrication process development, and device characterization for Geiger-mode gallium nitride (GaN) deep-UV (DUV) p-i-n avalanche photodiodes (APDs), indium gallium nitride (InGaN)/GaN-based violet/blue laser diodes (LDs), and GaN/InGaN-based npn radio-frequency (RF) double-heterojunction bipolar transistors (DHBTs). All the epitaxial materials of these devices were grown in the Advanced Materials and Devices Group (AMDG) led by Prof. Russell D. Dupuis at the Georgia Institute of Technology using the metalorganic chemical vapor deposition (MOCVD) technique. Geiger-mode GaN p-i-n APDs have important applications in DUV and UV single-photon detections. In the fabrication of GaN p-i-n APDs, the major technical challenge is the sidewall leakage current. To address this issue, two surface leakage reduction schemes have been developed: a wet-etching surface treatment technique to recover the dry-etching-induced surface damage, and a ledged structure to form a surface depletion layer to partially passivate the sidewall. The first Geiger-mode DUV GaN p-i-n APD on a free-standing (FS) c-plane GaN substrate has been demonstrated. InGaN/GaN-based violet/blue/green LDs are the coherent light sources for high-density optical storage systems and the next-generation full-color LD display systems. The design of InGaN/GaN LDs has several challenges, such as the quantum-confined stark effect (QCSE), the efficiency droop issue, and the optical confinement design optimization. In this dissertation, a step-graded electron-blocking layer (EBL) is studied to address the efficiency droop issue. Enhanced internal quantum efficiency (ɳi) has been observed on 420-nm InGaN/GaN-based LDs. Moreover, an InGaN waveguide design is implemented, and the continuous-wave (CW)-mode operation on 460-nm InGaN/GaN-based LDs is achieved at room temperature (RT). III-N HBTs are promising devices for the next-generation RF and power electronics because of their advantages of high breakdown voltages, high power handling capability, and high-temperature and harsh-environment operation stability. One of the major technical challenges to fabricate high-performance RF III-N HBTs is to suppress the base surface recombination current on the extrinsic base region. The wet-etching surface treatment has also been employed to lower the surface recombination current. As a result, a record small-signal current gain (hfe) > 100 is achieved on GaN/InGaN-based npn DHBTs on sapphire substrates. A cut-off frequency (fT) > 5.3 GHz and a maximum oscillation frequency (fmax) > 1.3 GHz are also demonstrated for the first time. Furthermore, A FS c-plane GaN substrate with low epitaxial defect density and good thermal dissipation ability is used for reduced base bulk recombination current. The hfe > 115, collector current density (JC) > 141 kA/cm², and power density > 3.05 MW/cm² are achieved at RT, which are all the highest values reported ever on III-N HBTs.PhDCommittee Chair: Shen, Shyh-Chiang; Committee Member: Dupuis, Russell; Committee Member: Jiang, Zhigang; Committee Member: Mukhopadhyay, Saibal; Committee Member: Yoder, Dougla

    STUDY OF RADIATION EFFECTS IN GAN-BASED DEVICES

    Get PDF
    Radiation tolerance of wide-bandgap Gallium Nitride (GaN) high-electron-mobility transistors (HEMT) has been studied, including X-ray-induced TID effects, heavy-ion-induced single event effects, and neutron-induced single event effects. Threshold voltage shift is observed in X-ray irradiation experiments, which recovers over time, indicating no permanent damage formed inside the device. Heavy-ion radiation effects in GaN HEMTs have been studied as a function of bias voltage, ion LET, radiation flux, and total fluence. A statistically significant amount of heavy-ion-induced gate dielectric degradation was observed, which consisted of hard breakdown and soft breakdown. Specific critical injection level experiments were designed and carried out to explore the gate dielectric degradation mechanism further. Transient device simulations determined ion-induced peak transient electric field and duration for a variety of ion LET, ion injection locations, and applied drain voltages. Results demonstrate that the peak transient electric fields exceed the breakdown strength of the gate dielectric, leading to dielectric defect generation and breakdown. GaN power device lifetime degradation caused by neutron irradiation is reported. Hundreds of devices were stressed in the off-state with various drain voltages from 75 V to 400 V while irradiated with a high-intensity neutron beam. Observing a statistically significant number of neutron-induced destructive single-event-effects (DSEEs) enabled an accurate extrapolation of terrestrial field failure rates. Nuclear event and electronic simulations were performed to model the effect of terrestrial neutron secondary ion-induced gate dielectric breakdown. Combined with the TCAD simulation results, we believe that heavy-ion-induced SEGR and neutron-induced SEGR share common physics mechanisms behind the failures. Overall, experimental data and simulation results provide evidence supporting the idea that both radiation-induced SBD and HBD are associated with defect-related conduction paths formed across the dielectric, in response to radiation-induced charge injection. A percolation theory-based dielectric degradation model is proposed, which explains the dielectric breakdown behaviors observed in heavy-ion irradiation experiments

    LASER Tech Briefs, September 1993

    Get PDF
    This edition of LASER Tech briefs contains a feature on photonics. The other topics include: Electronic Components and Circuits. Electronic Systems, Physical Sciences, Materials, Computer Programs, Mechanics, Machinery, Fabrication Technology, Mathematics and Information Sciences, Life Sciences and books and reports

    Ion Irradiation Effects on Damage Annealing and Dopant Activation in Single Crystal SiC

    Get PDF
    Energetic ions deposit their energy into a target material through elastic and inelastic processes: termed nuclear and electronic energy loss. In SiC [silicon carbide], these two processes are coupled and often competing, where nuclear energy loss generates defects and disorder, and electronic energy loss anneals the material. This work examines the relationship between these energy deposition processes and their impact on single crystal, 3C- and 4H-SiC microstructure via intermediate energy ion irradiations. With increasing incident ion atomic mass, decoupling between the two processes takes place, and inelastic energy deposition becomes less effective at inducing in-cascade annealing. Further, there are thresholds in electronic energy loss above which, disorder induced by damage energy is totally suppressed. These thresholds increase sub-linearly with incident ion atomic number. The feasibility of inelastic energy deposition inducing dopant activation is also studied. While 21 MeV Ni irradiation failed to activate implanted As ions, the irradiation did reduce implantation damage and altered the disorder and defect distribution in SiC. Overall, electronic energy loss from intermediate to higher energy ions can significantly alter physical disordering processes and electrical properties in SiC
    • …
    corecore