72,265 research outputs found

    On Body Characterization for On-Body Radio Propagation Channel using Wearable Textile Monopole Antenna

    Get PDF
    This paper presents the experimental investigation of the characterization of the narrowband on-body radio propagation channel at 2.45 GHz. Wearable planar textile monopole antennas (TM) were used in this measurement campaign. The measurements were conducted in the RFshielded room environment, considering eight on-body radio links. A statistical analysis was conducted on the spectral parameters of the channel to enable the prediction and modeling of dynamic on-body radio propagation characteristics. The empirical data were fitted to several wellknown statistical models to determine the model that provided the best fit for the data. The results showed that the path loss exponent was consistent with the results of previous studies. The results also demonstrated that lognormal distribution was found to be the best fit for path loss in dynamic on-body radio propagation channel

    Performance of ultrawideband wireless tags for on-body radio channel characterisation

    Get PDF
    Experimental characterisation of on-body radio channel for ultrawideband (UWB) wireless active tags is reported in this paper. The aim of this study is to investigate the performance of the commercially available wireless tags on the UWB on-body radio channel characterisation. Measurement campaigns are performed in the chamber and in an indoor environment. Statistical path loss parameters of nine different on-body radio channels for static and dynamic cases are shown and analyzed. Results demonstrated that lognormal distribution provides the best fits for on-body propagation channels path loss model. The path loss was modeled as a function of distance for 34 different receiver locations for propagation along the front part of the body. A reduction of 11.46% path loss exponent is noticed in case of indoor environment as compared to anechoic chamber. In addition, path loss exponent is also extracted for different body parts (trunk, arms, and legs). Second-order channel parameters as fade probability (FP), level crossing rate (LCR), and average fade duration (AFD) are also investigated

    Cracking in asphalt materials

    Get PDF
    This chapter provides a comprehensive review of both laboratory characterization and modelling of bulk material fracture in asphalt mixtures. For the purpose of organization, this chapter is divided into a section on laboratory tests and a section on models. The laboratory characterization section is further subdivided on the basis of predominant loading conditions (monotonic vs. cyclic). The section on constitutive models is subdivided into two sections, the first one containing fracture mechanics based models for crack initiation and propagation that do not include material degradation due to cyclic loading conditions. The second section discusses phenomenological models that have been developed for crack growth through the use of dissipated energy and damage accumulation concepts. These latter models have the capability to simulate degradation of material capacity upon exceeding a threshold number of loading cycles.Peer ReviewedPostprint (author's final draft

    Model validation for a noninvasive arterial stenosis detection problem

    Get PDF
    Copyright @ 2013 American Institute of Mathematical SciencesA current thrust in medical research is the development of a non-invasive method for detection, localization, and characterization of an arterial stenosis (a blockage or partial blockage in an artery). A method has been proposed to detect shear waves in the chest cavity which have been generated by disturbances in the blood flow resulting from a stenosis. In order to develop this methodology further, we use both one-dimensional pressure and shear wave experimental data from novel acoustic phantoms to validate corresponding viscoelastic mathematical models, which were developed in a concept paper [8] and refined herein. We estimate model parameters which give a good fit (in a sense to be precisely defined) to the experimental data, and use asymptotic error theory to provide confidence intervals for parameter estimates. Finally, since a robust error model is necessary for accurate parameter estimates and confidence analysis, we include a comparison of absolute and relative models for measurement error.The National Institute of Allergy and Infectious Diseases, the Air Force Office of Scientific Research, the Deopartment of Education and the Engineering and Physical Sciences Research Council (EPSRC)

    Positive and negative streamers in ambient air: modeling evolution and velocities

    Get PDF
    We simulate short positive and negative streamers in air at standard temperature and pressure. They evolve in homogeneous electric fields or emerge from needle electrodes with voltages of 10 to 20 kV. The streamer velocity at given streamer length depends only weakly on the initial ionization seed, except in the case of negative streamers in homogeneous fields. We characterize the streamers by length, head radius, head charge and field enhancement. We show that the velocity of positive streamers is mainly determined by their radius and in quantitative agreement with recent experimental results both for radius and velocity. The velocity of negative streamers is dominated by electron drift in the enhanced field; in the low local fields of the present simulations, it is little influenced by photo-ionization. Though negative streamer fronts always move at least with the electron drift velocity in the local field, this drift motion broadens the streamer head, decreases the field enhancement and ultimately leads to slower propagation or even extinction of the negative streamer.Comment: 18 pages, 10 figure

    Competing mechanisms of stress-assisted diffusivity and stretch-activated currents in cardiac electromechanics

    Full text link
    We numerically investigate the role of mechanical stress in modifying the conductivity properties of the cardiac tissue and its impact in computational models for cardiac electromechanics. We follow a theoretical framework recently proposed in [Cherubini, Filippi, Gizzi, Ruiz-Baier, JTB 2017], in the context of general reaction-diffusion-mechanics systems using multiphysics continuum mechanics and finite elasticity. In the present study, the adapted models are compared against preliminary experimental data of pig right ventricle fluorescence optical mapping. These data contribute to the characterization of the observed inhomogeneity and anisotropy properties that result from mechanical deformation. Our novel approach simultaneously incorporates two mechanisms for mechano-electric feedback (MEF): stretch-activated currents (SAC) and stress-assisted diffusion (SAD); and we also identify their influence into the nonlinear spatiotemporal dynamics. It is found that i) only specific combinations of the two MEF effects allow proper conduction velocity measurement; ii) expected heterogeneities and anisotropies are obtained via the novel stress-assisted diffusion mechanisms; iii) spiral wave meandering and drifting is highly mediated by the applied mechanical loading. We provide an analysis of the intrinsic structure of the nonlinear coupling using computational tests, conducted using a finite element method. In particular, we compare static and dynamic deformation regimes in the onset of cardiac arrhythmias and address other potential biomedical applications

    Crashworthiness assessment considering the dynamic damage and failure of a dual phase automotive steel

    No full text
    Analyzing crash worthiness of the automotive parts has been posing a great challenge in the sheet metal and automotive industry since several decades. The present contribution will focus on one of the most urging challenges of the crash worthiness simulations, namely, an enhanced constitutive formulation to predict the failure and cracking of structural parts made from high strength steel sheets under impact. A hybrid extended Modified Bai Wierzbicki damage plasticity model is devised to this end. The material model calibrated using the experimental data covering high strain rate deformation, damage and failure successfully predicted the instability and subsequent response of the crash box under impact. Simulation results provide the deformation shape and deformation energy in order to predict and evaluate the vehicle crashworthiness. The simulations further helped in discovering the irrefutable impact of strain rate and stress state on the impact response of the auto-body structure. The strain rate is found to adequately affect the energy absorption capacity of the crash box structure both in terms of impact load and fold formation whereas the complex stress state has a direct association to the development of instability within the structure and early damage appearance within the folds

    Phase-field modeling and simulation of fracture in brittle materials with strongly anisotropic surface energy

    Get PDF
    Crack propagation in brittle materials with anisotropic surface energy is important in applications involving single crystals, extruded polymers, or geological and organic materials. Furthermore, when this anisotropy is strong, the phenomenology of crack propagation becomes very rich, with forbidden crack propagation directions or complex sawtooth crack patterns. This problem interrogates fundamental issues in fracture mechanics, including the principles behind the selection of crack direction. Here, we propose a variational phase-field model for strongly anisotropic fracture, which resorts to the extended Cahn-Hilliard framework proposed in the context of crystal growth. Previous phase-field models for anisotropic fracture were formulated in a framework only allowing for weak anisotropy. We implement numerically our higher-order phase-field model with smooth local maximum entropy approximants in a direct Galerkin method. The numerical results exhibit all the features of strongly anisotropic fracture and reproduce strikingly well recent experimental observations.Peer ReviewedPostprint (author’s final draft

    Propagation modelling and measurements in a populated indoor environment at 5.2 GHz

    Get PDF
    There are a number of significant radiowave propagation phenomena present in the populated indoor environment, including multipath fading and human body effects. The latter can be divided into shadowing and scattering caused by pedestrian movement, and antenna-body interaction with bodyworn or hand portable terminals [1]. Human occupants within indoor environments are not always stationary and their movement will lead to temporal channel variations that can strongly affect the quality of indoor wireless communication systems. Hence, populated environments remain a major challenge for wireless local area networks (WLAN) and other indoor communication systems. Therefore, it is important to develop an understanding of the potential and limitations of indoor radiowave propagation at key frequencies of interest, such as the 5.2 GHz band employed by commercial wireless LAN standards such as IEEE 802.11a and HiperLAN 2. Although several indoor wireless models have been proposed in the literature, these temporal variations have not yet been thoroughly investigated. Therefore, we have made an important contribution to the area by conducting a systematic study of the problem, including a propagation measurement campaign and statistical channel characterization of human body effects on line-of-sight indoor propagation at 5.2 GHz. Measurements were performed in the everyday environment of a 7.2 m wide University hallway to determine the statistical characteristics of the 5.2 GHz channel for a fixed, transverse line-of-sight (LOS) link perturbed by pedestrian movement. Data were acquired at hours of relatively high pedestrian activity, between 12.00 and 14.00. The location was chosen as a typical indoor wireless system environment that had sufficient channel variability to permit a valid statistical analysis. The paper compares the first and second order statistics of the empirical signals with the Gaussian-derived distributions commonly used in wireless communications. The analysis shows that, as the number of pedestrians within the measurement location increases, the Ricean K-factor that best fits the Cumulative Distribution Function (CDF) of the empirical data tends to decrease proportionally, ranging from K=7 with 1 pedestrian to K=0 with 4 pedestrians. These results are consistent with previous results obtained for controlled measurement scenarios using a fixed link at 5.2 GHz in [2], where the K factor reduced as the number of pedestrians within a controlled measurement area increased. Level crossing rate results were Rice distributed, considering a maximum Doppler frequency of 8.67 Hz. While average fade duration results were significantly higher than theoretically computed Rice and Rayleigh, due to the fades caused by pedestrians. A novel statistical model that accurately describes the 5.2 GHz channel in the considered indoor environment is proposed. For the first time, the received envelope CDF is explicitly described in terms of a quantitative measurement of pedestrian traffic within the indoor environment. The model provides an insight into the prediction of human body shadowing effects for indoor channels at 5.2 GHz

    On-Body Channel Measurement Using Wireless Sensors

    Get PDF
    © 2012 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other users, including reprinting/ republishing this material for advertising or promotional purposes, creating new collective works for resale or redistribution to servers or lists, or reuse of any copyrighted components of this work in other works.This post-acceptance version of the paper is essentially complete, but may differ from the official copy of record, which can be found at the following web location (subscription required to access full paper): http://dx.doi.org/10.1109/TAP.2012.219693
    corecore