8,727 research outputs found

    Characterization and Identification of MicroRNA Core Promoters in Four Model Species

    Get PDF
    MicroRNAs are short, noncoding RNAs that play important roles in post-transcriptional gene regulation. Although many functions of microRNAs in plants and animals have been revealed in recent years, the transcriptional mechanism of microRNA genes is not well-understood. To elucidate the transcriptional regulation of microRNA genes, we study and characterize, in a genome scale, the promoters of intergenic microRNA genes in Caenorhabditis elegans, Homo sapiens, Arabidopsis thaliana, and Oryza sativa. We show that most known microRNA genes in these four species have the same type of promoters as protein-coding genes have. To further characterize the promoters of microRNA genes, we developed a novel promoter prediction method, called common query voting (CoVote), which is more effective than available promoter prediction methods. Using this new method, we identify putative core promoters of most known microRNA genes in the four model species. Moreover, we characterize the promoters of microRNA genes in these four species. We discover many significant, characteristic sequence motifs in these core promoters, several of which match or resemble the known cis-acting elements for transcription initiation. Among these motifs, some are conserved across different species while some are specific to microRNA genes of individual species

    Features of mammalian microRNA promoters emerge from polymerase II chromatin immunoprecipitation data

    Get PDF
    Background: MicroRNAs (miRNAs) are short, non-coding RNA regulators of protein coding genes. miRNAs play a very important role in diverse biological processes and various diseases. Many algorithms are able to predict miRNA genes and their targets, but their transcription regulation is still under investigation. It is generally believed that intragenic miRNAs (located in introns or exons of protein coding genes) are co-transcribed with their host genes and most intergenic miRNAs transcribed from their own RNA polymerase II (Pol II) promoter. However, the length of the primary transcripts and promoter organization is currently unknown. Methodology: We performed Pol II chromatin immunoprecipitation (ChIP)-chip using a custom array surrounding regions of known miRNA genes. To identify the true core transcription start sites of the miRNA genes we developed a new tool (CPPP). We showed that miRNA genes can be transcribed from promoters located several kilobases away and that their promoters share the same general features as those of protein coding genes. Finally, we found evidence that as many as 26% of the intragenic miRNAs may be transcribed from their own unique promoters. Conclusion: miRNA promoters have similar features to those of protein coding genes, but miRNA transcript organization is more complex. © 2009 Corcoran et al

    Methods of MicroRNA Promoter Prediction and Transcription Factor Mediated Regulatory Network

    Get PDF
    MicroRNAs (miRNAs) are short (~22 nucleotides) noncoding RNAs and disseminated throughout the genome, either in the intergenic regions or in the intronic sequences of protein-coding genes. MiRNAs have been proved to play important roles in regulating gene expression. Hence, understanding the transcriptional mechanism of miRNA genes is a very critical step to uncover the whole regulatory network. A number of miRNA promoter prediction models have been proposed in the past decade. This review summarized several most popular miRNA promoter prediction models which used genome sequence features, or other features, for example, histone markers, RNA Pol II binding sites, and nucleosome-free regions, achieved by high-throughput sequencing data. Some databases were described as resources for miRNA promoter information. We then performed comprehensive discussion on prediction and identification of transcription factor mediated microRNA regulatory networks

    A Database for TSSs of Human MicroRNAs

    Get PDF
    MicroRNAs (miRNAs) are small endogeneous non-coding RNAs of about 22nt length. These short RNAs regulate the expression of mRNAs by hybridizing with their 3'-UTRs or by translational repression. They have been shown to take crucial roles in many biological processes. Many of the current studies are focused over how mature miRNAs regulate mRNAs, even though there is very limited knowledge about their transcriptional loci. Primary miRNAs (pri-miRs) are first transcribed from the DNA, followed by the formation of precursor miRNA (pre-miR) by endonucleases activity, which finally produces mature miRNAs. Unfortunately, the identification of the loci of pri-miRs, and the associated information about transcription start sites (TSSs) and promoters is still in progress. This information, even though limited, may be useful for further study on the regulation of miRNAs. In this paper, we provide a novel database of miRNA TSSs (miRT) that might be a valuable resource for advanced research on miRNA regulation

    The 3' to 5' exoribonuclease DIS3: from structure and mechanisms to biological functions and role in human disease

    Get PDF
    DIS3 is a conserved exoribonuclease and catalytic subunit of the exosome, a protein complex involved in the 3’ to 5’ degradation and processing of both nuclear and cytoplasmic RNA species. Recently, aberrant expression of DIS3 has been found to be implicated in a range of different cancers. Perhaps most striking is the finding that DIS3 is recurrently mutated in 11% of multiple myeloma patients. Much work has been done to elucidate the structural and biochemical characteristics of DIS3, including the mechanistic details of its role as an effector of RNA decay pathways. Nevertheless, we do not understand how DIS3 mutations can lead to cancer. There are a number of studies that pertain to the function of DIS3 at the organismal level. Mutant phenotypes in S.pombe, S.cerevisae and Drosophila suggest DIS3 homologues have a common role in cell-cycle progression and microtubule assembly. DIS3 has also recently been implicated in antibody diversification of mouse B-cells. This article aims to review current knowledge of the structure, mechanisms and functions of DIS3 as well as highlighting the genetic patterns observed within myeloma patients, in order to yield insight into the putative role of DIS3 mutations in oncogenesis

    Conservation and implications of eukaryote transcriptional regulatory regions across multiple species

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Increasing evidence shows that whole genomes of eukaryotes are almost entirely transcribed into both protein coding genes and an enormous number of non-protein-coding RNAs (ncRNAs). Therefore, revealing the underlying regulatory mechanisms of transcripts becomes imperative. However, for a complete understanding of transcriptional regulatory mechanisms, we need to identify the regions in which they are found. We will call these transcriptional regulation regions, or TRRs, which can be considered functional regions containing a cluster of regulatory elements that cooperatively recruit transcriptional factors for binding and then regulating the expression of transcripts.</p> <p>Results</p> <p>We constructed a hierarchical stochastic language (HSL) model for the identification of core TRRs in yeast based on regulatory cooperation among TRR elements. The HSL model trained based on yeast achieved comparable accuracy in predicting TRRs in other species, e.g., fruit fly, human, and rice, thus demonstrating the conservation of TRRs across species. The HSL model was also used to identify the TRRs of genes, such as p53 or <it>OsALYL1</it>, as well as microRNAs. In addition, the ENCODE regions were examined by HSL, and TRRs were found to pervasively locate in the genomes.</p> <p>Conclusion</p> <p>Our findings indicate that 1) the HSL model can be used to accurately predict core TRRs of transcripts across species and 2) identified core TRRs by HSL are proper candidates for the further scrutiny of specific regulatory elements and mechanisms. Meanwhile, the regulatory activity taking place in the abundant numbers of ncRNAs might account for the ubiquitous presence of TRRs across the genome. In addition, we also found that the TRRs of protein coding genes and ncRNAs are similar in structure, with the latter being more conserved than the former.</p

    Discovery of functional elements in 12 Drosophila genomes using evolutionary signatures

    Get PDF
    Sequencing of multiple related species followed by comparative genomics analysis constitutes a powerful approach for the systematic understanding of any genome. Here, we use the genomes of 12 Drosophila species for the de novo discovery of functional elements in the fly. Each type of functional element shows characteristic patterns of change, or 'evolutionary signatures', dictated by its precise selective constraints. Such signatures enable recognition of new protein-coding genes and exons, spurious and incorrect gene annotations, and numerous unusual gene structures, including abundant stop-codon readthrough. Similarly, we predict non-protein-coding RNA genes and structures, and new microRNA (miRNA) genes. We provide evidence of miRNA processing and functionality from both hairpin arms and both DNA strands. We identify several classes of pre- and post-transcriptional regulatory motifs, and predict individual motif instances with high confidence. We also study how discovery power scales with the divergence and number of species compared, and we provide general guidelines for comparative studies

    Argonaute-Bound Small RNAs from Promoter-Proximal RNA Polymerase II

    Get PDF
    Argonaute (Ago) proteins mediate posttranscriptional gene repression by binding guide miRNAs to regulate targeted RNAs. To confidently assess Ago-bound small RNAs, we adapted a mouse embryonic stem cell system to express a single epitope-tagged Ago protein family member in an inducible manner. Here, we report the small RNA profile of Ago-deficient cells and show that Ago-dependent stability is a common feature of mammalian miRNAs. Using this criteria and immunopurification, we identified an Ago-dependent class of noncanonical miRNAs derived from protein-coding gene promoters, which we name transcriptional start site miRNAs (TSS-miRNAs). A subset of promoter-proximal RNA polymerase II (RNAPII) complexes produces hairpin RNAs that are processed in a DiGeorge syndrome critical region gene 8 (Dgcr8)/Drosha-independent but Dicer-dependent manner. TSS-miRNA activity is detectable from endogenous levels and following overexpression of mRNA constructs. Finally, we present evidence of differential expression and conservation in humans, suggesting important roles in gene regulation.United States. Public Health Service (grant RO1 GM34277)National Cancer Institute (U.S.) (PO1-CA42063)National Cancer Institute (U.S.) (Koch Institute Support (core) grant P30-CA14051)National Institutes of Health (U.S.). Ruth L. Kirschstein National Research Service Award (F32GM101872)National Institutes of Health (U.S.). Ruth L. Kirschstein National Research Service Award (F32CA139902

    Genome-Wide Survey of MicroRNA - Transcription Factor Feed-Forward Regulatory Circuits in Human

    Full text link
    In this work, we describe a computational framework for the genome-wide identification and characterization of mixed transcriptional/post-transcriptional regulatory circuits in humans. We concentrated in particular on feed-forward loops (FFL), in which a master transcription factor regulates a microRNA, and together with it, a set of joint target protein coding genes. The circuits were assembled with a two step procedure. We first constructed separately the transcriptional and post-transcriptional components of the human regulatory network by looking for conserved over-represented motifs in human and mouse promoters, and 3'-UTRs. Then, we combined the two subnetworks looking for mixed feed-forward regulatory interactions, finding a total of 638 putative (merged) FFLs. In order to investigate their biological relevance, we filtered these circuits using three selection criteria: (I) GeneOntology enrichment among the joint targets of the FFL, (II) independent computational evidence for the regulatory interactions of the FFL, extracted from external databases, and (III) relevance of the FFL in cancer. Most of the selected FFLs seem to be involved in various aspects of organism development and differentiation. We finally discuss a few of the most interesting cases in detail.Comment: 51 pages, 5 figures, 4 tables. Supporting information included. Accepted for publication in Molecular BioSystem
    corecore