14,121 research outputs found

    Generalized Satisfiability Problems via Operator Assignments

    Full text link
    Schaefer introduced a framework for generalized satisfiability problems on the Boolean domain and characterized the computational complexity of such problems. We investigate an algebraization of Schaefer's framework in which the Fourier transform is used to represent constraints by multilinear polynomials in a unique way. The polynomial representation of constraints gives rise to a relaxation of the notion of satisfiability in which the values to variables are linear operators on some Hilbert space. For the case of constraints given by a system of linear equations over the two-element field, this relaxation has received considerable attention in the foundations of quantum mechanics, where such constructions as the Mermin-Peres magic square show that there are systems that have no solutions in the Boolean domain, but have solutions via operator assignments on some finite-dimensional Hilbert space. We obtain a complete characterization of the classes of Boolean relations for which there is a gap between satisfiability in the Boolean domain and the relaxation of satisfiability via operator assignments. To establish our main result, we adapt the notion of primitive-positive definability (pp-definability) to our setting, a notion that has been used extensively in the study of constraint satisfaction problems. Here, we show that pp-definability gives rise to gadget reductions that preserve satisfiability gaps. We also present several additional applications of this method. In particular and perhaps surprisingly, we show that the relaxed notion of pp-definability in which the quantified variables are allowed to range over operator assignments gives no additional expressive power in defining Boolean relations

    Linear and Branching System Metrics

    Get PDF
    We extend the classical system relations of trace\ud inclusion, trace equivalence, simulation, and bisimulation to a quantitative setting in which propositions are interpreted not as boolean values, but as elements of arbitrary metric spaces.\ud \ud Trace inclusion and equivalence give rise to asymmetrical and symmetrical linear distances, while simulation and bisimulation give rise to asymmetrical and symmetrical branching distances. We study the relationships among these distances, and we provide a full logical characterization of the distances in terms of quantitative versions of LTL and Ī¼-calculus. We show that, while trace inclusion (resp. equivalence) coincides with simulation (resp. bisimulation) for deterministic boolean transition systems, linear\ud and branching distances do not coincide for deterministic metric transition systems. Finally, we provide algorithms for computing the distances over finite systems, together with a matching lower complexity bound

    Appell polynomials and their relatives II. Boolean theory

    Full text link
    The Appell-type polynomial family corresponding to the simplest non-commutative derivative operator turns out to be connected with the Boolean probability theory, the simplest of the three universal non-commutative probability theories (the other two being free and tensor/classical probability). The basic properties of the Boolean Appell polynomials are described. In particular, their generating function turns out to have a resolvent-type form, just like the generating function for the free Sheffer polynomials. It follows that the Meixner (that is, Sheffer plus orthogonal) polynomial classes, in the Boolean and free theory, coincide. This is true even in the multivariate case. A number of applications of this fact are described, to the Belinschi-Nica and Bercovici-Pata maps, conditional freeness, and the Laha-Lukacs type characterization. A number of properties which hold for the Meixner class in the free and classical cases turn out to hold in general in the Boolean theory. Examples include the behavior of the Jacobi coefficients under convolution, the relationship between the Jacobi coefficients and cumulants, and an operator model for cumulants. Along the way, we obtain a multivariate version of the Stieltjes continued fraction expansion for the moment generating function of an arbitrary state with monic orthogonal polynomials

    Logic Meets Algebra: the Case of Regular Languages

    Full text link
    The study of finite automata and regular languages is a privileged meeting point of algebra and logic. Since the work of Buchi, regular languages have been classified according to their descriptive complexity, i.e. the type of logical formalism required to define them. The algebraic point of view on automata is an essential complement of this classification: by providing alternative, algebraic characterizations for the classes, it often yields the only opportunity for the design of algorithms that decide expressibility in some logical fragment. We survey the existing results relating the expressibility of regular languages in logical fragments of MSO[S] with algebraic properties of their minimal automata. In particular, we show that many of the best known results in this area share the same underlying mechanics and rely on a very strong relation between logical substitutions and block-products of pseudovarieties of monoid. We also explain the impact of these connections on circuit complexity theory.Comment: 37 page

    Lower bounds on the size of semidefinite programming relaxations

    Full text link
    We introduce a method for proving lower bounds on the efficacy of semidefinite programming (SDP) relaxations for combinatorial problems. In particular, we show that the cut, TSP, and stable set polytopes on nn-vertex graphs are not the linear image of the feasible region of any SDP (i.e., any spectrahedron) of dimension less than 2nc2^{n^c}, for some constant c>0c > 0. This result yields the first super-polynomial lower bounds on the semidefinite extension complexity of any explicit family of polytopes. Our results follow from a general technique for proving lower bounds on the positive semidefinite rank of a matrix. To this end, we establish a close connection between arbitrary SDPs and those arising from the sum-of-squares SDP hierarchy. For approximating maximum constraint satisfaction problems, we prove that SDPs of polynomial-size are equivalent in power to those arising from degree-O(1)O(1) sum-of-squares relaxations. This result implies, for instance, that no family of polynomial-size SDP relaxations can achieve better than a 7/8-approximation for MAX-3-SAT
    • ā€¦
    corecore