6,920 research outputs found

    Subspace Methods for Data Attack on State Estimation: A Data Driven Approach

    Full text link
    Data attacks on state estimation modify part of system measurements such that the tempered measurements cause incorrect system state estimates. Attack techniques proposed in the literature often require detailed knowledge of system parameters. Such information is difficult to acquire in practice. The subspace methods presented in this paper, on the other hand, learn the system operating subspace from measurements and launch attacks accordingly. Conditions for the existence of an unobservable subspace attack are obtained under the full and partial measurement models. Using the estimated system subspace, two attack strategies are presented. The first strategy aims to affect the system state directly by hiding the attack vector in the system subspace. The second strategy misleads the bad data detection mechanism so that data not under attack are removed. Performance of these attacks are evaluated using the IEEE 14-bus network and the IEEE 118-bus network.Comment: 12 page

    The generation of dual wavelength pulse fiber laser using fiber bragg grating

    Get PDF
    A stable simple generation of dual wavelength pulse fiber laser on experimental method is proposed and demonstrated by using Figure eight circuit diagram. The generation of dual wavelength pulse fiber laser was proposed using fiber Bragg gratings (FBGs) with two different central wavelengths which are 1550 nm and 1560 nm. At 600 mA (27.78 dBm) of laser diode, the stability of dual wavelength pulse fiber laser appears on 1550 nm and 1560 nm with the respective peak powers of -54.03 dBm and -58.00 dBm. The wavelength spacing of the spectrum is about 10 nm while the signal noise to ratio (SNR) for both peaks are about 8.23 dBm and 9.67 dBm. In addition, the repetition rate is 2.878 MHz with corresponding pulse spacing of about 0.5 μs, is recorded

    Likelihood based observability analysis and confidence intervals for predictions of dynamic models

    Get PDF
    Mechanistic dynamic models of biochemical networks such as Ordinary Differential Equations (ODEs) contain unknown parameters like the reaction rate constants and the initial concentrations of the compounds. The large number of parameters as well as their nonlinear impact on the model responses hamper the determination of confidence regions for parameter estimates. At the same time, classical approaches translating the uncertainty of the parameters into confidence intervals for model predictions are hardly feasible. In this article it is shown that a so-called prediction profile likelihood yields reliable confidence intervals for model predictions, despite arbitrarily complex and high-dimensional shapes of the confidence regions for the estimated parameters. Prediction confidence intervals of the dynamic states allow a data-based observability analysis. The approach renders the issue of sampling a high-dimensional parameter space into evaluating one-dimensional prediction spaces. The method is also applicable if there are non-identifiable parameters yielding to some insufficiently specified model predictions that can be interpreted as non-observability. Moreover, a validation profile likelihood is introduced that should be applied when noisy validation experiments are to be interpreted. The properties and applicability of the prediction and validation profile likelihood approaches are demonstrated by two examples, a small and instructive ODE model describing two consecutive reactions, and a realistic ODE model for the MAP kinase signal transduction pathway. The presented general approach constitutes a concept for observability analysis and for generating reliable confidence intervals of model predictions, not only, but especially suitable for mathematical models of biological systems

    Delineating Parameter Unidentifiabilities in Complex Models

    Full text link
    Scientists use mathematical modelling to understand and predict the properties of complex physical systems. In highly parameterised models there often exist relationships between parameters over which model predictions are identical, or nearly so. These are known as structural or practical unidentifiabilities, respectively. They are hard to diagnose and make reliable parameter estimation from data impossible. They furthermore imply the existence of an underlying model simplification. We describe a scalable method for detecting unidentifiabilities, and the functional relations defining them, for generic models. This allows for model simplification, and appreciation of which parameters (or functions thereof) cannot be estimated from data. Our algorithm can identify features such as redundant mechanisms and fast timescale subsystems, as well as the regimes in which such approximations are valid. We base our algorithm on a novel quantification of regional parametric sensitivity: multiscale sloppiness. Traditionally, the link between parametric sensitivity and the conditioning of the parameter estimation problem is made locally, through the Fisher Information Matrix. This is valid in the regime of infinitesimal measurement uncertainty. We demonstrate the duality between multiscale sloppiness and the geometry of confidence regions surrounding parameter estimates made where measurement uncertainty is non-negligible. Further theoretical relationships are provided linking multiscale sloppiness to the Likelihood-ratio test. From this, we show that a local sensitivity analysis (as typically done) is insufficient for determining the reliability of parameter estimation, even with simple (non)linear systems. Our algorithm provides a tractable alternative. We finally apply our methods to a large-scale, benchmark Systems Biology model of NF-κ\kappaB, uncovering previously unknown unidentifiabilities

    A mathematical model for breath gas analysis of volatile organic compounds with special emphasis on acetone

    Full text link
    Recommended standardized procedures for determining exhaled lower respiratory nitric oxide and nasal nitric oxide have been developed by task forces of the European Respiratory Society and the American Thoracic Society. These recommendations have paved the way for the measurement of nitric oxide to become a diagnostic tool for specific clinical applications. It would be desirable to develop similar guidelines for the sampling of other trace gases in exhaled breath, especially volatile organic compounds (VOCs) which reflect ongoing metabolism. The concentrations of water-soluble, blood-borne substances in exhaled breath are influenced by: (i) breathing patterns affecting gas exchange in the conducting airways; (ii) the concentrations in the tracheo-bronchial lining fluid; (iii) the alveolar and systemic concentrations of the compound. The classical Farhi equation takes only the alveolar concentrations into account. Real-time measurements of acetone in end-tidal breath under an ergometer challenge show characteristics which cannot be explained within the Farhi setting. Here we develop a compartment model that reliably captures these profiles and is capable of relating breath to the systemic concentrations of acetone. By comparison with experimental data it is inferred that the major part of variability in breath acetone concentrations (e.g., in response to moderate exercise or altered breathing patterns) can be attributed to airway gas exchange, with minimal changes of the underlying blood and tissue concentrations. Moreover, it is deduced that measured end-tidal breath concentrations of acetone determined during resting conditions and free breathing will be rather poor indicators for endogenous levels. Particularly, the current formulation includes the classical Farhi and the Scheid series inhomogeneity model as special limiting cases.Comment: 38 page
    corecore