73 research outputs found

    Simulation of cell movement through evolving environment: a fictitious domain approach

    Get PDF
    A numerical method for simulating the movement of unicellular organisms which respond to chemical signals is presented. Cells are modelled as objects of finite size while the extracellular space is described by reaction-diffusion partial differential equations. This modular simulation allows the implementation of different models at the different scales encountered in cell biology and couples them in one single framework. The global computational cost is contained thanks to the use of the fictitious domain method for finite elements, allowing the efficient solve of partial differential equations in moving domains. Finally, a mixed formulation is adopted in order to better monitor the flux of chemicals, specifically at the interface between the cells and the extracellular domain

    Numerical analysis for a chemotaxis-navier-stokes system

    Get PDF
    In this paper we develop a numerical scheme for approximating a d-dimensional chemotaxis- Navier–Stokes system, d= 2, 3, modeling cellular swimming in incompressible fluids. This model describes the chemotaxis-fluid interaction in cases where the chemical signal is consumed with a rate proportional to the amount of organisms. We construct numerical approximations based on the Finite Element method and analyze optimal error estimates and convergence towards regular solutions. In order to construct the numerical scheme, we use a splitting technique to deal with the chemo-attraction term in the cell-density equation, leading to introduce a new variable given by the gradient of the chemical concentration. Having the equivalent model, we consider a fully discrete Finite Element approximation which is well-posed and mass-conservative. We obtain uniform estimates and analyze the convergence of the scheme. Finally, we present some numerical simulations to verify the good behavior of our scheme, as well as to check numerically the optimal error estimates proved in our theoretical analysis

    Analysis of a chemo-repulsion model with nonlinear production: The continuous problem and unconditionally energy stable fully discrete schemes

    Get PDF
    We consider the following repulsive-productive chemotaxis model: Let p(1,2)p\in (1,2), find u0u \geq 0, the cell density, and v0v \geq 0, the chemical concentration, satisfying \begin{equation}\label{C5:Am} \left\{ \begin{array} [c]{lll} \partial_t u - \Delta u - \nabla\cdot (u\nabla v)=0 \ \ \mbox{in}\ \Omega,\ t>0,\\ \partial_t v - \Delta v + v = u^p \ \ \mbox{in}\ \Omega,\ t>0, \end{array} \right. \end{equation} in a bounded domain ΩRd\Omega\subseteq \mathbb{R}^d, d=2,3d=2,3. By using a regularization technique, we prove the existence of solutions of this problem. Moreover, we propose three fully discrete Finite Element (FE) nonlinear approximations, where the first one is defined in the variables (u,v)(u,v), and the second and third ones by introducing σ=v{\boldsymbol\sigma}=\nabla v as an auxiliary variable. We prove some unconditional properties such as mass-conservation, energy-stability and solvability of the schemes. Finally, we compare the behavior of the schemes throughout several numerical simulations and give some conclusions.Comment: arXiv admin note: substantial text overlap with arXiv:1807.0111

    A chemorepulsion model with superlinear production: analysis of the continuous problem and two approximately positive and energy-stable schemes

    Get PDF
    We consider the following repulsive-productive chemotaxis model: find 0, the cell density, and 0, the chemical concentration, satisfying 0 in 0 in 0 (1) with 1 2 , a bounded domain ( 1 2 3), endowed with non-flux boundary conditions. By using a regularization technique, we prove the existence of global in time weak solutions of (1) which is regular and unique for 1 2. Moreover, we propose two fully discrete Finite Element (FE) nonlinear schemes, the first one defined in the variables under structured meshes, and the second one by using the auxiliary variable and defined in general meshes. We prove some unconditional properties for both schemes, such as mass-conservation, solvability, energy-stability and approximated positivity. Finally, we compare the behavior of these schemes with respect to the classical FE backward Euler scheme throughout several numerical simulations and give some conclusions

    Unconditionally energy stable fully discrete schemes for a chemo-repulsion model

    Get PDF
    This work is devoted to studying unconditionally energy stable and mass-conservative numerical schemes for the following repulsive-productive chemotaxis model: find u ≥ 0, the cell density, and v ≥ 0, the chemical concentration, such that ∂tu − Δu −∇· (u∇v) = 0 in Ω, t> 0, ∂tv − Δv + v = u in Ω, t> 0, in a bounded domain Ω ⊆ Rd, d = 2, 3. By using a regularization technique, we propose three fully discrete Finite Element (FE) approximations. The first one is a nonlinear approximation in the variables (u, v); the second one is another nonlinear approximation obtained by introducing σ = ∇v as an auxiliary variable; and the third one is a linear approximation constructed by mixing the regularization procedure with the energy quadratization technique, in which other auxiliary variables are introduced. In addition, we study the well-posedness of the numerical schemes, proving unconditional existence of solution, but conditional uniqueness (for the nonlinear schemes). Finally, we compare the behavior of such schemes throughout several numerical simulations and provide some conclusions.Ministerio de Economía y Competitividad (MINECO). EspañaEuropean Commission (EC). Fondo Europeo de Desarrollo Regional (FEDER)Vicerrectoría de Investigación y Extensión (Universidad Industrial de Santander

    Mathematical Biology

    Get PDF
    Mathematical biology is a fast growing field of research, which on one hand side faces challenges resulting from the enormous amount of data provided by experimentalists in the recent years, on the other hand new mathematical methods may have to be developed to meet the demand for explanation and prediction on how specific biological systems function

    Modelling and numerical analysis of energy-dissipating systems with nonlocal free energy

    Get PDF
    The broad objective of this thesis is to design finite-volume schemes for a family of energy-dissipating systems. All the systems studied in this thesis share a common property: they are driven by an energy that decreases as the system evolves. Such decrease is produced by a dissipation mechanism, which ensures that the system eventually reaches a steady state where the energy is minimised. The numerical schemes presented here are designed to discretely preserve the dissipation of the energy, leading to more accurate and cost-effective simulations. Most of the material in this thesis is based on the publications [16, 54, 65, 66, 243]. The research content is structured in three parts. First, Part II presents well-balanced first-, second- and high-order finite-volume schemes for a general class of hydrodynamic systems with linear and nonlinear damping. These well-balanced schemes preserve stationary states at machine precision, while discretely preserving the dissipation of the discrete free energy for first- and second-order accuracy. Second, Part III focuses on finite-volume schemes for the Cahn-Hilliard equation that unconditionally and discretely satisfy the boundedness of the phase eld and the free-energy dissipation. In addition, our Cahn-Hilliard scheme is employed as an image inpainting filter before passing damaged images into a classification neural network, leading to a significant improvement of damaged-image prediction. Third, Part IV introduces nite-volume schemes to solve stochastic gradient-flow equations. Such equations are of crucial importance within the framework of fluctuating hydrodynamics and dynamic density functional theory. The main advantages of these schemes are the preservation of non-negative densities in the presence of noise and the accurate reproduction of the statistical properties of the physical systems. All these fi nite-volume schemes are complemented with prototypical examples from relevant applications, which highlight the bene fit of our algorithms to elucidate some of the unknown analytical results.Open Acces
    corecore