350 research outputs found

    06241 Abstracts Collection -- Human Motion - Understanding, Modeling, Capture and Animation. 13th Workshop

    Get PDF
    From 11.06.06 to 16.06.06, the Dagstuhl Seminar 06241 ``Human Motion - Understanding, Modeling, Capture and Animation. 13th Workshop "Theoretical Foundations of Computer Vision"\u27\u27 was held in the International Conference and Research Center (IBFI), Schloss Dagstuhl. During the seminar, several participants presented their current research, and ongoing work and open problems were discussed. Abstracts of the presentations given during the seminar as well as abstracts of seminar results and ideas are put together in this paper. The first section describes the seminar topics and goals in general

    Human gait identification and analysis

    Get PDF
    This thesis was submitted for the degree of Doctor of Philosophy and awarded by Brunel University.Human gait identification has become an active area of research due to increased security requirements. Human gait identification is a potential new tool for identifying individuals beyond traditional methods. The emergence of motion capture techniques provided a chance of high accuracy in identification because completely recorded gait information can be recorded compared with security cameras. The aim of this research was to build a practical method of gait identification and investigate the individual characteristics of gait. For this purpose, a gait identification approach was proposed, identification results were compared by different methods, and several studies about the individual characteristics of gait were performed. This research included the following: (1) a novel, effective set of gait features were proposed; (2) gait signatures were extracted by three different methods: statistical method, principal component analysis, and Fourier expansion method; (3) gait identification results were compared by these different methods; (4) two indicators were proposed to evaluate gait features for identification; (5) novel and clear definitions of gait phases and gait cycle were proposed; (6) gait features were investigated by gait phases; (7) principal component analysis and the fixing root method were used to elucidate which features were used to represent gait and why; (8) gait similarity was investigated; (9) gait attractiveness was investigated. This research proposed an efficient framework for identifying individuals from gait via a novel feature set based on 3D motion capture data. A novel evaluating method of gait signatures for identification was proposed. Three different gait signature extraction methods were applied and compared. The average identification rate was over 93%, with the best result close to 100%. This research also proposed a novel dividing method of gait phases, and the different appearances of gait features in eight gait phases were investigated. This research identified the similarities and asymmetric appearances between left body movement and right body movement in gait based on the proposed gait phase dividing method. This research also initiated an analysing method for gait features extraction by the fixing root method. A prediction model of gait attractiveness was built with reasonable accuracy by principal component analysis and linear regression of natural logarithm of parameters. A systematic relationship was observed between the motions of individual markers and the attractiveness ratings. The lower legs and feet were extracted as features of attractiveness by the fixing root method. As an extension of gait research, human seated motion was also investigated.This study is funded by the Dorothy Hodgkin Postgraduate Awards and Beijing East Gallery Co. Ltd

    Robust arbitrary view gait recognition based on parametric 3D human body reconstruction and virtual posture synthesis

    Get PDF
    This paper proposes an arbitrary view gait recognition method where the gait recognition is performed in 3-dimensional (3D) to be robust to variation in speed, inclined plane and clothing, and in the presence of a carried item. 3D parametric gait models in a gait period are reconstructed by an optimized 3D human pose, shape and simulated clothes estimation method using multiview gait silhouettes. The gait estimation involves morphing a new subject with constant semantic constraints using silhouette cost function as observations. Using a clothes-independent 3D parametric gait model reconstruction method, gait models of different subjects with various postures in a cycle are obtained and used as galleries to construct 3D gait dictionary. Using a carrying-items posture synthesized model, virtual gait models with different carrying-items postures are synthesized to further construct an over-complete 3D gait dictionary. A self-occlusion optimized simultaneous sparse representation model is also introduced to achieve high robustness in limited gait frames. Experimental analyses on CASIA B dataset and CMU MoBo dataset show a significant performance gain in terms of accuracy and robustness

    Vision-based techniques for gait recognition

    Full text link
    Global security concerns have raised a proliferation of video surveillance devices. Intelligent surveillance systems seek to discover possible threats automatically and raise alerts. Being able to identify the surveyed object can help determine its threat level. The current generation of devices provide digital video data to be analysed for time varying features to assist in the identification process. Commonly, people queue up to access a facility and approach a video camera in full frontal view. In this environment, a variety of biometrics are available - for example, gait which includes temporal features like stride period. Gait can be measured unobtrusively at a distance. The video data will also include face features, which are short-range biometrics. In this way, one can combine biometrics naturally using one set of data. In this paper we survey current techniques of gait recognition and modelling with the environment in which the research was conducted. We also discuss in detail the issues arising from deriving gait data, such as perspective and occlusion effects, together with the associated computer vision challenges of reliable tracking of human movement. Then, after highlighting these issues and challenges related to gait processing, we proceed to discuss the frameworks combining gait with other biometrics. We then provide motivations for a novel paradigm in biometrics-based human recognition, i.e. the use of the fronto-normal view of gait as a far-range biometrics combined with biometrics operating at a near distance

    Automatic visual detection of human behavior: a review from 2000 to 2014

    Get PDF
    Due to advances in information technology (e.g., digital video cameras, ubiquitous sensors), the automatic detection of human behaviors from video is a very recent research topic. In this paper, we perform a systematic and recent literature review on this topic, from 2000 to 2014, covering a selection of 193 papers that were searched from six major scientific publishers. The selected papers were classified into three main subjects: detection techniques, datasets and applications. The detection techniques were divided into four categories (initialization, tracking, pose estimation and recognition). The list of datasets includes eight examples (e.g., Hollywood action). Finally, several application areas were identified, including human detection, abnormal activity detection, action recognition, player modeling and pedestrian detection. Our analysis provides a road map to guide future research for designing automatic visual human behavior detection systems.This work is funded by the Portuguese Foundation for Science and Technology (FCT - Fundacao para a Ciencia e a Tecnologia) under research Grant SFRH/BD/84939/2012

    Automatic Video-based Analysis of Human Motion

    Get PDF

    Gait Analysis and Recognition for Automated Visual Surveillance

    No full text
    Human motion analysis has received a great attention from researchers in the last decade due to its potential use in different applications such as automated visual surveillance. This field of research focuses on the perception and recognition of human activities, including people identification. We explore a new approach for walking pedestrian detection in an unconstrained outdoor environment. The proposed algorithm is based on gait motion as the rhythm of the footprint pattern of walking people is considered the stable and characteristic feature for the classification of moving objects. The novelty of our approach is motivated by the latest research for people identification using gait. The experimental results confirmed the robustness of our method to discriminate between single walking subject, groups of people and vehicles with a successful detection rate of 100%. Furthermore, the results revealed the potential of our method to extend visual surveillance systems to recognize walking people. Furthermore, we propose a new approach to extract human joints (vertex positions) using a model-based method. The spatial templates describing the human gait motion are produced via gait analysis performed on data collected from manual labeling. The Elliptic Fourier Descriptors are used to represent the motion models in a parametric form. The heel strike data is exploited to reduce the dimensionality of the parametric models. People walk normal to the viewing plane, as major gait information is available in a sagittal view. The ankle, knee and hip joints are successfully extracted with high accuracy for indoor and outdoor data. In this way, we have established a baseline analysis which can be deployed in recognition, marker-less analysis and other areas. The experimental results confirmed the robustness of the model-based approach to recognise walking subjects with a correct classification rate of 95% using purely the dynamic features derived from the joint motion. Therefore, this confirms the early psychological theories claiming that the discriminative features for motion perception and people recognition are embedded in gait kinematics. Furthermore, to quantify the intrusive nature of gait recognition we explore the effects of the different covariate factors on the performance of gait recognition. The covariate factors include footwear, clothing, carrying conditions and walking speed. As far as the author can determine, this is the first major study of its kind in this field to analyse the covariate factors using a model-based method

    Advances in Monocular Exemplar-based Human Body Pose Analysis: Modeling, Detection and Tracking

    Get PDF
    Esta tesis contribuye en el análisis de la postura del cuerpo humano a partir de secuencias de imágenes adquiridas con una sola cámara. Esta temática presenta un amplio rango de potenciales aplicaciones en video-vigilancia, video-juegos o aplicaciones biomédicas. Las técnicas basadas en patrones han tenido éxito, sin embargo, su precisión depende de la similitud del punto de vista de la cámara y de las propiedades de la escena entre las imágenes de entrenamiento y las de prueba. Teniendo en cuenta un conjunto de datos de entrenamiento capturado mediante un número reducido de cámaras fijas, paralelas al suelo, se han identificado y analizado tres escenarios posibles con creciente nivel de dificultad: 1) una cámara estática paralela al suelo, 2) una cámara de vigilancia fija con un ángulo de visión considerablemente diferente, y 3) una secuencia de video capturada con una cámara en movimiento o simplemente una sola imagen estática
    corecore