4,639 research outputs found

    Construction of Special Solutions for Nonintegrable Systems

    Full text link
    The Painleve test is very useful to construct not only the Laurent series solutions of systems of nonlinear ordinary differential equations but also the elliptic and trigonometric ones. The standard methods for constructing the elliptic solutions consist of two independent steps: transformation of a nonlinear polynomial differential equation into a nonlinear algebraic system and a search for solutions of the obtained system. It has been demonstrated by the example of the generalized Henon-Heiles system that the use of the Laurent series solutions of the initial differential equation assists to solve the obtained algebraic system. This procedure has been automatized and generalized on some type of multivalued solutions. To find solutions of the initial differential equation in the form of the Laurent or Puiseux series we use the Painleve test. This test can also assist to solve the inverse problem: to find the form of a polynomial potential, which corresponds to the required type of solutions. We consider the five-dimensional gravitational model with a scalar field to demonstrate this.Comment: LaTeX, 14 pages, the paper has been published in the Journal of Nonlinear Mathematical Physics (http://www.sm.luth.se/math/JNMP/

    On the Polytope Escape Problem for Continuous Linear Dynamical Systems

    Full text link
    The Polyhedral Escape Problem for continuous linear dynamical systems consists of deciding, given an affine function f:RdRdf: \mathbb{R}^{d} \rightarrow \mathbb{R}^{d} and a convex polyhedron PRd\mathcal{P} \subseteq \mathbb{R}^{d}, whether, for some initial point x0\boldsymbol{x}_{0} in P\mathcal{P}, the trajectory of the unique solution to the differential equation x˙(t)=f(x(t))\dot{\boldsymbol{x}}(t)=f(\boldsymbol{x}(t)), x(0)=x0\boldsymbol{x}(0)=\boldsymbol{x}_{0}, is entirely contained in P\mathcal{P}. We show that this problem is decidable, by reducing it in polynomial time to the decision version of linear programming with real algebraic coefficients, thus placing it in R\exists \mathbb{R}, which lies between NP and PSPACE. Our algorithm makes use of spectral techniques and relies among others on tools from Diophantine approximation.Comment: Accepted to HSCC 201

    Open problems, questions, and challenges in finite-dimensional integrable systems

    Get PDF
    The paper surveys open problems and questions related to different aspects of integrable systems with finitely many degrees of freedom. Many of the open problems were suggested by the participants of the conference “Finite-dimensional Integrable Systems, FDIS 2017” held at CRM, Barcelona in July 2017.Postprint (updated version
    corecore