12 research outputs found

    Recent Advances in Σ-definability over Continuous Data Types

    Get PDF
    The purpose of this paper is to survey our recent research in computability and definability over continuous data types such as the real numbers, real-valued functions and functionals. We investigate the expressive power and algorithmic properties of the language of Sigma-formulas intended to represent computability over the real numbers. In order to adequately represent computability we extend the reals by the structure of hereditarily finite sets. In this setting it is crucial to consider the real numbers without equality since the equality test is undecidable over the reals. We prove Engeler's Lemma for Sigma-definability over the reals without the equality test which relates Sigma-definability with definability in the constructive infinitary language L_{omega_1 omega}. Thus, a relation over the real numbers is Sigma-definable if and only if it is definable by a disjunction of a recursively enumerable set of quantifier free formulas. This result reveals computational aspects of Sigma-definability and also gives topological characterisation of Sigma-definable relations over the reals without the equality test. We also illustrate how computability over the real numbers can be expressed in the language of Sigma-formulas

    Fixed Points on Abstract Structures without the Equality Test

    Get PDF
    In this paper we present a study of definability properties of fixed points of effective operators on abstract structures without the equality test. In particular we prove that Gandy theorem holds for abstract structures. This provides a useful tool for dealing with recursive definitions using Sigma-formulas. One of the applications of Gandy theorem in the case of the reals without the equality test is that it allows us to define universal Sigma-predicates. It leads to a topological characterisation of Sigma-relations on |R

    Proof mining in metric fixed point theory and ergodic theory

    Get PDF
    In this survey we present some recent applications of proof mining to the fixed point theory of (asymptotically) nonexpansive mappings and to the metastability (in the sense of Terence Tao) of ergodic averages in uniformly convex Banach spaces.Comment: appeared as OWP 2009-05, Oberwolfach Preprints; 71 page

    On Bar Recursive Interpretations of Analysis.

    Get PDF
    PhDThis dissertation concerns the computational interpretation of analysis via proof interpretations, and examines the variants of bar recursion that have been used to interpret the axiom of choice. It consists of an applied and a theoretical component. The applied part contains a series of case studies which address the issue of understanding the meaning and behaviour of bar recursive programs extracted from proofs in analysis. Taking as a starting point recent work of Escardo and Oliva on the product of selection functions, solutions to Godel's functional interpretation of several well known theorems of mathematics are given, and the semantics of the extracted programs described. In particular, new game-theoretic computational interpretations are found for weak Konig's lemma for 01 -trees and for the minimal-bad-sequence argument. On the theoretical side several new definability results which relate various modes of bar recursion are established. First, a hierarchy of fragments of system T based on finite bar recursion are defined, and it is shown that these fragments are in one-to-one correspondence with the usual fragments based on primitive recursion. Secondly, it is shown that the so called `special' variant of Spector's bar recursion actually defines the general one. Finally, it is proved that modified bar recursion (in the form of the implicitly controlled product of selection functions), open recursion, update recursion and the Berardi-Bezem- Coquand realizer for countable choice are all primitive recursively equivalent in the model of continuous functionals.EPSR

    Statistical approach to proof theory

    Get PDF

    The Universality Problem

    Get PDF
    The theme of this thesis is to explore the universality problem in set theory in connection to model theory, to present some methods for finding universality results, to analyse how these methods were applied, to mention some results and to emphasise some philosophical interrogations that these aspects entail. A fundamental aspect of the universality problem is to find what determines the existence of universal objects. That means that we have to take into consideration and examine the methods that we use in proving their existence or nonexistence, the role of cardinal arithmetic, combinatorics etc. The proof methods used in the mathematical part will be mostly set-theoretic, but some methods from model theory and category theory will also be present. A graph might be the simplest, but it is also one of the most useful notions in mathematics. We show that there is a faithful functor F from the category L of linear orders to the category G of graphs that preserves model theoretic-related universality results (classes of objects having universal models in exactly the same cardinals, and also having the same universality spectrum). Trees constitute combinatorial objects and have a central role in set theory. The universality of trees is connected to the universality of linear orders, but it also seems to present more challenges, which we survey and present some results. We show that there is no embedding between an ℵ2-Souslin tree and a non-special wide ℵ2 tree T with no cofinal branches. Furthermore, using the notion of ascent path, we prove that the class of non-special ℵ2-Souslin tree with an ω-ascent path a has maximal complexity number, 2ℵ2 = ℵ3. Within the general framework of the universality problem in set theory and model theory, while emphasising their approaches and their connections with regard to this topic, we examine the possibility of drawing some philosophical conclusions connected to, among others, the notions of mathematical knowledge, mathematical object and proof

    Number Theory, Analysis and Geometry: In Memory of Serge Lang

    Get PDF
    Serge Lang was an iconic figure in mathematics, both for his own important work and for the indelible impact he left on the field of mathematics, on his students, and on his colleagues. Over the course of his career, Lang traversed a tremendous amount of mathematical ground. As he moved from subject to subject, he found analogies that led to important questions in such areas as number theory, arithmetic geometry and the theory of negatively curved spaces. Lang's conjectures will keep many mathematicians occupied far into the future. In the spirit of Lang’s vast contribution to mathematics, this memorial volume contains articles by prominent mathematicians in a variety of areas, namely number theory, analysis and geometry, representing Lang’s own breadth of interests. A special introduction by John Tate includes a brief and engaging account of Serge Lang’s life
    corecore