521 research outputs found

    Visualising Basins of Attraction for the Cross-Entropy and the Squared Error Neural Network Loss Functions

    Get PDF
    Quantification of the stationary points and the associated basins of attraction of neural network loss surfaces is an important step towards a better understanding of neural network loss surfaces at large. This work proposes a novel method to visualise basins of attraction together with the associated stationary points via gradient-based random sampling. The proposed technique is used to perform an empirical study of the loss surfaces generated by two different error metrics: quadratic loss and entropic loss. The empirical observations confirm the theoretical hypothesis regarding the nature of neural network attraction basins. Entropic loss is shown to exhibit stronger gradients and fewer stationary points than quadratic loss, indicating that entropic loss has a more searchable landscape. Quadratic loss is shown to be more resilient to overfitting than entropic loss. Both losses are shown to exhibit local minima, but the number of local minima is shown to decrease with an increase in dimensionality. Thus, the proposed visualisation technique successfully captures the local minima properties exhibited by the neural network loss surfaces, and can be used for the purpose of fitness landscape analysis of neural networks.Comment: Preprint submitted to the Neural Networks journa

    Fitness Landscape Analysis of Automated Machine Learning Search Spaces

    Get PDF
    The field of Automated Machine Learning (AutoML) has as its main goal to automate the process of creating complete Machine Learning (ML) pipelines to any dataset without requiring deep user expertise in ML. Several AutoML methods have been proposed so far, but there is not a single one that really stands out. Furthermore, there is a lack of studies on the characteristics of the fitness landscape of AutoML search spaces. Such analysis may help to understand the performance of different optimization methods for AutoML and how to improve them. This paper adapts classic fitness landscape analysis measures to the context of AutoML. This is a challenging task, as AutoML search spaces include discrete, continuous, categorical and conditional hyperparameters. We propose an ML pipeline representation, a neighborhood definition and a distance metric between pipelines, and use them in the evaluation of the fitness distance correlation (FDC) and the neutrality ratio for a given AutoML search space. Results of FDC are counter-intuitive and require a more in-depth analysis of a range of search spaces. Results of neutrality, in turn, show a strong positive correlation between the mean neutrality ratio and the fitness value

    Empirical Loss Landscape Analysis of Neural Network Activation Functions

    Full text link
    Activation functions play a significant role in neural network design by enabling non-linearity. The choice of activation function was previously shown to influence the properties of the resulting loss landscape. Understanding the relationship between activation functions and loss landscape properties is important for neural architecture and training algorithm design. This study empirically investigates neural network loss landscapes associated with hyperbolic tangent, rectified linear unit, and exponential linear unit activation functions. Rectified linear unit is shown to yield the most convex loss landscape, and exponential linear unit is shown to yield the least flat loss landscape, and to exhibit superior generalisation performance. The presence of wide and narrow valleys in the loss landscape is established for all activation functions, and the narrow valleys are shown to correlate with saturated neurons and implicitly regularised network configurations.Comment: Accepted for publication in Genetic and Evolutionary Computation Conference Companion, July 15--19, 2023, Lisbon, Portuga

    Fitness Landscape Analysis of Feed-Forward Neural Networks

    Get PDF
    Neural network training is a highly non-convex optimisation problem with poorly understood properties. Due to the inherent high dimensionality, neural network search spaces cannot be intuitively visualised, thus other means to establish search space properties have to be employed. Fitness landscape analysis encompasses a selection of techniques designed to estimate the properties of a search landscape associated with an optimisation problem. Applied to neural network training, fitness landscape analysis can be used to establish a link between the properties of the error landscape and various neural network hyperparameters. This study applies fitness landscape analysis to investigate the influence of the search space boundaries, regularisation parameters, loss functions, activation functions, and feed-forward neural network architectures on the properties of the resulting error landscape. A novel gradient-based sampling technique is proposed, together with a novel method to quantify and visualise stationary points and the associated basins of attraction in neural network error landscapes.Thesis (PhD)--University of Pretoria, 2019.NRFComputer SciencePhDUnrestricte

    Artificial Ontogenies: A Computational Model of the Control and Evolution of Development

    No full text
    Understanding the behaviour of biological systems is a challenging task. Gene regulation, development and evolution are each a product of nonlinear interactions between many individual agents: genes, cells or organisms. Moreover, these three processes are not isolated, but interact with one another in an important fashion. The development of an organism involves complex patterns of dynamic behaviour at the genetic level. The gene networks that produce this behaviour are subject to mutations that can alter the course of development, resulting in the production of novel morphologies. Evolution occurs when these novel morphologies are favoured by natural selection and survive to pass on their genes to future generations. Computational models can assist us to understand biological systems by providing a framework within which their behaviour can be explored. Many natural processes, including gene regulation and development, have a computational element to their control. Constructing formal models of these systems enables their behaviour to be simulated, observed and quantified on a scale not otherwise feasible. This thesis uses a computational simulation methodology to explore the relationship between development and evolution. An important question in evolutionary biology is how to explain the direction of evolution. Conventional explanations of evolutionary history have focused on the role of natural selection in orienting evolution. More recently, it has been argued that the nature of development, and the way it changes in response to mutation, may also be a significant factor. A network-lineage model of artificial ontogenies is described that incorporates a developmental mapping between the dynamics of a gene network and a cell lineage representation of a phenotype. Three series of simulation studies are reported, exploring: (a) the relationship between the structure of a gene network and its dynamic behaviour; (b) the characteristic distributions of ontogenies and phenotypes generated by the dynamics of gene networks; (c) the effect of these characteristic distributions on the evolution of ontogeny. The results of these studies indicate that the model networks are capable of generating a diverse range of stable behaviours, and possess a small yet significant sensitivity to perturbation. In the context of developmental control, the intrinsic dynamics of the model networks predispose the production of ontogenies with a modular, quasi-systematic structure. This predisposition is reflected in the structure of variation available for selection in an adaptive search process, resulting in the evolution of ontogenies biased towards simplicity. These results suggest a possible explanation for the levels of ontogenetic complexity observed in biological organisms: that they may be a product of the network architecture of developmental control. By quantifying complexity, variation and bias, the network-lineage model described in this thesis provides a computational method for investigating the effects of development on the direction of evolution. In doing so, it establishes a viable framework for simulating computational aspects of complex biological systems

    From genotypes to organisms: State-of-the-art and perspectives of a cornerstone in evolutionary dynamics

    Get PDF
    Understanding how genotypes map onto phenotypes, fitness, and eventually organisms is arguably the next major missing piece in a fully predictive theory of evolution. We refer to this generally as the problem of the genotype-phenotype map. Though we are still far from achieving a complete picture of these relationships, our current understanding of simpler questions, such as the structure induced in the space of genotypes by sequences mapped to molecular structures, has revealed important facts that deeply affect the dynamical description of evolutionary processes. Empirical evidence supporting the fundamental relevance of features such as phenotypic bias is mounting as well, while the synthesis of conceptual and experimental progress leads to questioning current assumptions on the nature of evolutionary dynamics-cancer progression models or synthetic biology approaches being notable examples. This work delves into a critical and constructive attitude in our current knowledge of how genotypes map onto molecular phenotypes and organismal functions, and discusses theoretical and empirical avenues to broaden and improve this comprehension. As a final goal, this community should aim at deriving an updated picture of evolutionary processes soundly relying on the structural properties of genotype spaces, as revealed by modern techniques of molecular and functional analysis.Comment: 111 pages, 11 figures uses elsarticle latex clas

    Visualising basins of attraction for the cross-entropy and the squared error neural network loss functions

    Get PDF
    Quantification of the stationary points and the associated basins of attraction of neural network loss surfaces is an important step towards a better understanding of neural network loss surfaces at large. This work proposes a novel method to visualise basins of attraction together with the associated stationary points via gradient-based stochastic sampling. The proposed technique is used to perform an empirical study of the loss surfaces generated by two different error metrics: quadratic loss and entropic loss. The empirical observations confirm the theoretical hypothesis regarding the nature of neural network attraction basins. Entropic loss is shown to exhibit stronger gradients and fewer stationary points than quadratic loss, indicating that entropic loss has a more searchable landscape. Quadratic loss is shown to be more resilient to overfitting than entropic loss. Both losses are shown to exhibit local minima, but the number of local minima is shown to decrease with an increase in dimensionality. Thus, the proposed visualisation technique successfully captures the local minima properties exhibited by the neural network loss surfaces, and can be used for the purpose of fitness landscape analysis of neural networks.http://www.elsevier.com/locate/neucom2022-03-12hj2021Computer Scienc

    Adaptive evolution in static and dynamic environments

    Get PDF
    This thesis provides a framework for describing a canonical evolutionary system. Populations of individuals are envisaged as traversing a search space structured by genetic and developmental operators under the influence of selection. Selection acts on individuals' phenotypic expressions, guiding the population over an evaluation landscape, which describes an idealised evaluation surface over the phenotypic space. The corresponding valuation landscape describes evaluations over the genotypic space and may be transformed by within generation adaptive (learning) or maladaptive (fault induction) local search. Populations subjected to particular genetic and selection operators are claimed to evolve towards a region of the valuation landscape with a characteristic local ruggedness, as given by the runtime operator correlation coefficient. This corresponds to the view of evolution discovering an evolutionarily stable population, or quasi-species, held in a state of dynamic equilibrium by the operator set and evaluation function. This is demonstrated by genetic algorithm experiments using the NK landscapes and a novel, evolvable evaluation function, The Tower of Babel. In fluctuating environments of varying temporal ruggedness, different operator sets are correspondingly more or less adapted. Quantitative genetics analyses of populations in sinusoidally fluctuating conditions are shown to describe certain well known electronic filters. This observation suggests the notion of Evolutionary Signal Processing. Genetic algorithm experiments in which a population tracks a sinusoidally fluctuating optimum support this view. Using a self-adaptive mutation rate, it is possible to tune the evolutionary filter to the environmental frequency. For a time varying frequency, the mutation rate reacts accordingly. With local search, the valuation landscape is transformed through temporal smoothing. By coevolving modifier genes for individual learning and the rate at which the benefits may be directly transmitted to the next generation, the relative adaptedness of individual learning and cultural inheritance according to the rate of environmental change is demonstrated
    • …
    corecore