319 research outputs found

    Characterisation of Strongly Normalising lambda-mu-Terms

    Full text link
    We provide a characterisation of strongly normalising terms of the lambda-mu-calculus by means of a type system that uses intersection and product types. The presence of the latter and a restricted use of the type omega enable us to represent the particular notion of continuation used in the literature for the definition of semantics for the lambda-mu-calculus. This makes it possible to lift the well-known characterisation property for strongly-normalising lambda-terms - that uses intersection types - to the lambda-mu-calculus. From this result an alternative proof of strong normalisation for terms typeable in Parigot's propositional logical system follows, by means of an interpretation of that system into ours.Comment: In Proceedings ITRS 2012, arXiv:1307.784

    A journey through resource control lambda calculi and explicit substitution using intersection types (an account)

    Get PDF
    In this paper we invite the reader to a journey through three lambda calculi with resource control: the lambda calculus, the sequent lambda calculus, and the lambda calculus with explicit substitution. All three calculi enable explicit control of resources due to the presence of weakening and contraction operators. Along this journey, we propose intersection type assignment systems for all three resource control calculi. We recognise the need for three kinds of variables all requiring different kinds of intersection types. Our main contribution is the characterisation of strong normalisation of reductions in all three calculi, using the techniques of reducibility, head subject expansion, a combination of well-orders and suitable embeddings of terms

    Infinitary λ\lambda-Calculi from a Linear Perspective (Long Version)

    Get PDF
    We introduce a linear infinitary λ\lambda-calculus, called ℓΛ∞\ell\Lambda_{\infty}, in which two exponential modalities are available, the first one being the usual, finitary one, the other being the only construct interpreted coinductively. The obtained calculus embeds the infinitary applicative λ\lambda-calculus and is universal for computations over infinite strings. What is particularly interesting about ℓΛ∞\ell\Lambda_{\infty}, is that the refinement induced by linear logic allows to restrict both modalities so as to get calculi which are terminating inductively and productive coinductively. We exemplify this idea by analysing a fragment of ℓΛ\ell\Lambda built around the principles of SLL\mathsf{SLL} and 4LL\mathsf{4LL}. Interestingly, it enjoys confluence, contrarily to what happens in ordinary infinitary λ\lambda-calculi

    Resource control and strong normalisation

    Get PDF
    We introduce the \emph{resource control cube}, a system consisting of eight intuitionistic lambda calculi with either implicit or explicit control of resources and with either natural deduction or sequent calculus. The four calculi of the cube that correspond to natural deduction have been proposed by Kesner and Renaud and the four calculi that correspond to sequent lambda calculi are introduced in this paper. The presentation is parameterized with the set of resources (weakening or contraction), which enables a uniform treatment of the eight calculi of the cube. The simply typed resource control cube, on the one hand, expands the Curry-Howard correspondence to intuitionistic natural deduction and intuitionistic sequent logic with implicit or explicit structural rules and, on the other hand, is related to substructural logics. We propose a general intersection type system for the resource control cube calculi. Our main contribution is a characterisation of strong normalisation of reductions in this cube. First, we prove that typeability implies strong normalisation in the ''natural deduction base" of the cube by adapting the reducibility method. We then prove that typeability implies strong normalisation in the ''sequent base" of the cube by using a combination of well-orders and a suitable embedding in the ''natural deduction base". Finally, we prove that strong normalisation implies typeability in the cube using head subject expansion. All proofs are general and can be made specific to each calculus of the cube by instantiating the set of resources

    Mechanising syntax with binders in Coq

    Get PDF
    Mechanising binders in general-purpose proof assistants such as Coq is cumbersome and difficult. Yet binders, substitutions, and instantiation of terms with substitutions are a critical ingredient of many programming languages. Any practicable mechanisation of the meta-theory of the latter hence requires a lean formalisation of the former. We investigate the topic from three angles: First, we realise formal systems with binders based on both pure and scoped de Bruijn algebras together with basic syntactic rewriting lemmas and automation. We automate this process in a compiler called Autosubst; our final tool supports many-sorted, variadic, and modular syntax. Second, we justify our choice of realisation and mechanise a proof of convergence of the sigma calculus, a calculus of explicit substitutions that is complete for equality of the de Bruijn algebra corresponding to the lambda calculus. Third, to demonstrate the practical usefulness of our approach, we provide concise, transparent, and accessible mechanised proofs for a variety of case studies refined to de Bruijn substitutions.Die Mechanisierung von Bindern in universellen Beweisassistenten wie Coq ist arbeitsaufwĂ€ndig und schwierig. Binder, Substitutionen und die Instantiierung von Substitutionen sind jedoch kritischer Bestandteil vieler Programmiersprachen. Deshalb setzt eine praktikable Mechanisierung der Metatheorie von Programmiersprachen eine elegante Formalisierung von Bindern voraus. Wir nĂ€hern uns dem Thema aus drei Richtungen an: Zuerst realisieren wir formale Systeme mit Bindern mit Hilfe von reinen und indizierten de Bruijn Algebren, zusammen mit grundlegenden syntaktischen Gleichungen und Automatisierung. Wir automatisieren diesen Prozess in einem Kompilierer namens Autosubst. Unser finaler Kompilierer unterstĂŒtzt Sortenlogik, variadische Syntax und modulare Syntax. Zweitens rechtfertigen wir unsere ReprĂ€sentation und mechanisieren einen Beweis der Konvergenz des SP-KalkĂŒls, einem KalkĂŒl expliziter Substitutionen der bezĂŒglich der Gleichheit der puren de Bruijn Algebra des -KalkĂŒls vollstĂ€ndig ist. Drittens entwickeln wir kurze, transparente und leicht zugĂ€ngliche mechanisierte Beweise fĂŒr diverse Fallstudien, die wir an de Bruijn Substitutionen angepasst haben. Wir weisen so die praktische Anwendbarkeit unseres Ansatzes nach
    • 

    corecore