2,131 research outputs found

    Morphological Priors for Probabilistic Neural Word Embeddings

    Full text link
    Word embeddings allow natural language processing systems to share statistical information across related words. These embeddings are typically based on distributional statistics, making it difficult for them to generalize to rare or unseen words. We propose to improve word embeddings by incorporating morphological information, capturing shared sub-word features. Unlike previous work that constructs word embeddings directly from morphemes, we combine morphological and distributional information in a unified probabilistic framework, in which the word embedding is a latent variable. The morphological information provides a prior distribution on the latent word embeddings, which in turn condition a likelihood function over an observed corpus. This approach yields improvements on intrinsic word similarity evaluations, and also in the downstream task of part-of-speech tagging.Comment: Appeared at the Conference on Empirical Methods in Natural Language Processing (EMNLP 2016, Austin

    On the Evolution of Knowledge Graphs: A Survey and Perspective

    Full text link
    Knowledge graphs (KGs) are structured representations of diversified knowledge. They are widely used in various intelligent applications. In this article, we provide a comprehensive survey on the evolution of various types of knowledge graphs (i.e., static KGs, dynamic KGs, temporal KGs, and event KGs) and techniques for knowledge extraction and reasoning. Furthermore, we introduce the practical applications of different types of KGs, including a case study in financial analysis. Finally, we propose our perspective on the future directions of knowledge engineering, including the potential of combining the power of knowledge graphs and large language models (LLMs), and the evolution of knowledge extraction, reasoning, and representation

    PGNet: Real-time Arbitrarily-Shaped Text Spotting with Point Gathering Network

    Full text link
    The reading of arbitrarily-shaped text has received increasing research attention. However, existing text spotters are mostly built on two-stage frameworks or character-based methods, which suffer from either Non-Maximum Suppression (NMS), Region-of-Interest (RoI) operations, or character-level annotations. In this paper, to address the above problems, we propose a novel fully convolutional Point Gathering Network (PGNet) for reading arbitrarily-shaped text in real-time. The PGNet is a single-shot text spotter, where the pixel-level character classification map is learned with proposed PG-CTC loss avoiding the usage of character-level annotations. With a PG-CTC decoder, we gather high-level character classification vectors from two-dimensional space and decode them into text symbols without NMS and RoI operations involved, which guarantees high efficiency. Additionally, reasoning the relations between each character and its neighbors, a graph refinement module (GRM) is proposed to optimize the coarse recognition and improve the end-to-end performance. Experiments prove that the proposed method achieves competitive accuracy, meanwhile significantly improving the running speed. In particular, in Total-Text, it runs at 46.7 FPS, surpassing the previous spotters with a large margin.Comment: 10 pages, 8 figures, AAAI 202
    • …
    corecore