948 research outputs found

    Intelligent computing applications to assist perceptual training in medical imaging

    Get PDF
    The research presented in this thesis represents a body of work which addresses issues in medical imaging, primarily as it applies to breast cancer screening and laparoscopic surgery. The concern here is how computer based methods can aid medical practitioners in these tasks. Thus, research is presented which develops both new techniques of analysing radiologists performance data and also new approaches of examining surgeons visual behaviour when they are undertaking laparoscopic training. Initially a new chest X-Ray self-assessment application is described which has been developed to assess and improve radiologists performance in detecting lung cancer. Then, in breast cancer screening, a method of identifying potential poor performance outliers at an early stage in a national self-assessment scheme is demonstrated. Additionally, a method is presented to optimize whether a radiologist, in using this scheme, has correctly localised and identified an abnormality or made an error. One issue in appropriately measuring radiological performance in breast screening is that both the size of clinical monitors used and the difficulty in linking the medical image to the observer s line of sight hinders suitable eye tracking. Consequently, a new method is presented which links these two items. Laparoscopic surgeons have similar issues to radiologists in interpreting a medical display but with the added complications of hand-eye co-ordination. Work is presented which examines whether visual search feedback of surgeons operations can be useful training aids

    An automatic system for classification of breast cancer lesions in ultrasound images

    Get PDF
    Breast cancer is the most common of all cancers and second most deadly cancer in women in the developed countries. Mammography and ultrasound imaging are the standard techniques used in cancer screening. Mammography is widely used as the primary tool for cancer screening, however it is invasive technique due to radiation used. Ultrasound seems to be good at picking up many cancers missed by mammography. In addition, ultrasound is non-invasive as no radiation is used, portable and versatile. However, ultrasound images have usually poor quality because of multiplicative speckle noise that results in artifacts. Because of noise segmentation of suspected areas in ultrasound images is a challenging task that remains an open problem despite many years of research. In this research, a new method for automatic detection of suspected breast cancer lesions using ultrasound is proposed. In this fully automated method, new de-noising and segmentation techniques are introduced and high accuracy classifier using combination of morphological and textural features is used. We use a combination of fuzzy logic and compounding to denoise ultrasound images and reduce shadows. We introduced a new method to identify the seed points and then use region growing method to perform segmentation. For preliminary classification we use three classifiers (ANN, AdaBoost, FSVM) and then we use a majority voting to get the final result. We demonstrate that our automated system performs better than the other state-of-the-art systems. On our database containing ultrasound images for 80 patients we reached accuracy of 98.75% versus ABUS method with 88.75% accuracy and Hybrid Filtering method with 92.50% accuracy. Future work would involve a larger dataset of ultrasound images and we will extend our system to handle colour ultrasound images. We will also study the impact of larger number of texture and morphological features as well as weighting scheme on performance of our classifier. We will also develop an automated method to identify the "wall thickness" of a mass in breast ultrasound images. Presently the wall thickness is extracted manually with the help of a physician

    Computer-aided image quality assessment in automated 3D breast ultrasound images

    Get PDF
    Automated 3D breast ultrasound (ABUS) is a valuable, non-ionising adjunct to X-ray mammography for breast cancer screening and diagnosis for women with dense breasts. High image quality is an important prerequisite for diagnosis and has to be guaranteed at the time of acquisition. The high throughput of images in a screening scenario demands for automated solutions. In this work, an automated image quality assessment system rating ABUS scans at the time of acquisition was designed and implemented. Quality assessment of present diagnostic ultrasound images has rarely been performed demanding thorough analysis of potential image quality aspects in ABUS. Therefore, a reader study was initiated, making two clinicians rate the quality of clinical ABUS images. The frequency of specific quality aspects was evaluated revealing that incorrect positioning and insufficiently applied contact fluid caused the most relevant image quality issues. The relative position of the nipple in the image, the acoustic shadow caused by the nipple as well as the shape of the breast contour reflect patient positioning and ultrasound transducer handling. Morphological and histogram-based features utilized for machine learning to reproduce the manual classification as provided by the clinicians. At 97 % specificity, the automatic classification achieved sensitivities of 59 %, 45 %, and 46 % for the three aforementioned aspects, respectively. The nipple is an important landmark in breast imaging, which is generally---but not always correctly---pinpointed by the technicians. An existing nipple detection algorithm was extended by probabilistic atlases and exploited for automatic detection of incorrectly annotated nipple marks. The nipple detection rate was increased from 82 % to 85 % and the classification achieved 90 % sensitivity at 89 % specificity. A lack of contact fluid between transducer and skin can induce reverberation patterns and acoustic shadows, which can possibly obscure lesions. Parameter maps were computed in order to localize these artefact regions and yielded a detection rate of 83 % at 2.6 false positives per image. Parts of the presented work were integrated to clinical workflow making up a novel image quality assessment system that supported technicians in their daily routine by detecting images of insufficient quality and indicating potential improvements for a repeated scan while the patient was still in the examination room. First evaluations showed that the proposed method sensitises technicians for the radiologists' demands on diagnostically valuable images

    Mammography

    Get PDF
    In this volume, the topics are constructed from a variety of contents: the bases of mammography systems, optimization of screening mammography with reference to evidence-based research, new technologies of image acquisition and its surrounding systems, and case reports with reference to up-to-date multimodality images of breast cancer. Mammography has been lagged in the transition to digital imaging systems because of the necessity of high resolution for diagnosis. However, in the past ten years, technical improvement has resolved the difficulties and boosted new diagnostic systems. We hope that the reader will learn the essentials of mammography and will be forward-looking for the new technologies. We want to express our sincere gratitude and appreciation?to all the co-authors who have contributed their work to this volume

    Teleoperation of MRI-Compatible Robots with Hybrid Actuation and Haptic Feedback

    Get PDF
    Image guided surgery (IGS), which has been developing fast recently, benefits significantly from the superior accuracy of robots and magnetic resonance imaging (MRI) which is a great soft tissue imaging modality. Teleoperation is especially desired in the MRI because of the highly constrained space inside the closed-bore MRI and the lack of haptic feedback with the fully autonomous robotic systems. It also very well maintains the human in the loop that significantly enhances safety. This dissertation describes the development of teleoperation approaches and implementation on an example system for MRI with details of different key components. The dissertation firstly describes the general teleoperation architecture with modular software and hardware components. The MRI-compatible robot controller, driving technology as well as the robot navigation and control software are introduced. As a crucial step to determine the robot location inside the MRI, two methods of registration and tracking are discussed. The first method utilizes the existing Z shaped fiducial frame design but with a newly developed multi-image registration method which has higher accuracy with a smaller fiducial frame. The second method is a new fiducial design with a cylindrical shaped frame which is especially suitable for registration and tracking for needles. Alongside, a single-image based algorithm is developed to not only reach higher accuracy but also run faster. In addition, performance enhanced fiducial frame is also studied by integrating self-resonant coils. A surgical master-slave teleoperation system for the application of percutaneous interventional procedures under continuous MRI guidance is presented. The slave robot is a piezoelectric-actuated needle insertion robot with fiber optic force sensor integrated. The master robot is a pneumatic-driven haptic device which not only controls the position of the slave robot, but also renders the force associated with needle placement interventions to the surgeon. Both of master and slave robots mechanical design, kinematics, force sensing and feedback technologies are discussed. Force and position tracking results of the master-slave robot are demonstrated to validate the tracking performance of the integrated system. MRI compatibility is evaluated extensively. Teleoperated needle steering is also demonstrated under live MR imaging. A control system of a clinical grade MRI-compatible parallel 4-DOF surgical manipulator for minimally invasive in-bore prostate percutaneous interventions through the patient’s perineum is discussed in the end. The proposed manipulator takes advantage of four sliders actuated by piezoelectric motors and incremental rotary encoders, which are compatible with the MRI environment. Two generations of optical limit switches are designed to provide better safety features for real clinical use. The performance of both generations of the limit switch is tested. MRI guided accuracy and MRI-compatibility of whole robotic system is also evaluated. Two clinical prostate biopsy cases have been conducted with this assistive robot

    Complexity Reduction in Image-Based Breast Cancer Care

    Get PDF
    The diversity of malignancies of the breast requires personalized diagnostic and therapeutic decision making in a complex situation. This thesis contributes in three clinical areas: (1) For clinical diagnostic image evaluation, computer-aided detection and diagnosis of mass and non-mass lesions in breast MRI is developed. 4D texture features characterize mass lesions. For non-mass lesions, a combined detection/characterisation method utilizes the bilateral symmetry of the breast s contrast agent uptake. (2) To improve clinical workflows, a breast MRI reading paradigm is proposed, exemplified by a breast MRI reading workstation prototype. Instead of mouse and keyboard, it is operated using multi-touch gestures. The concept is extended to mammography screening, introducing efficient navigation aids. (3) Contributions to finite element modeling of breast tissue deformations tackle two clinical problems: surgery planning and the prediction of the breast deformation in a MRI biopsy device

    Ultrasound Imaging

    Get PDF
    This book provides an overview of ultrafast ultrasound imaging, 3D high-quality ultrasonic imaging, correction of phase aberrations in medical ultrasound images, etc. Several interesting medical and clinical applications areas are also discussed in the book, like the use of three dimensional ultrasound imaging in evaluation of Asherman's syndrome, the role of 3D ultrasound in assessment of endometrial receptivity and follicular vascularity to predict the quality oocyte, ultrasound imaging in vascular diseases and the fetal palate, clinical application of ultrasound molecular imaging, Doppler abdominal ultrasound in small animals and so on

    Medical Robotics

    Get PDF
    The first generation of surgical robots are already being installed in a number of operating rooms around the world. Robotics is being introduced to medicine because it allows for unprecedented control and precision of surgical instruments in minimally invasive procedures. So far, robots have been used to position an endoscope, perform gallbladder surgery and correct gastroesophogeal reflux and heartburn. The ultimate goal of the robotic surgery field is to design a robot that can be used to perform closed-chest, beating-heart surgery. The use of robotics in surgery will expand over the next decades without any doubt. Minimally Invasive Surgery (MIS) is a revolutionary approach in surgery. In MIS, the operation is performed with instruments and viewing equipment inserted into the body through small incisions created by the surgeon, in contrast to open surgery with large incisions. This minimizes surgical trauma and damage to healthy tissue, resulting in shorter patient recovery time. The aim of this book is to provide an overview of the state-of-art, to present new ideas, original results and practical experiences in this expanding area. Nevertheless, many chapters in the book concern advanced research on this growing area. The book provides critical analysis of clinical trials, assessment of the benefits and risks of the application of these technologies. This book is certainly a small sample of the research activity on Medical Robotics going on around the globe as you read it, but it surely covers a good deal of what has been done in the field recently, and as such it works as a valuable source for researchers interested in the involved subjects, whether they are currently “medical roboticists” or not
    • …
    corecore