220 research outputs found

    A Vector Grouping Learning Brain Storm Optimization Algorithm for Global Optimization Problems

    Get PDF
    The original brain storm optimization (BSO) method does not rationally compromise global exploration and local exploitation capability, which results in the premature convergence when solving complicated optimization problems like the shifted or shifted rotated functions. To address this problem, the paper develops a vector grouping learning BSO (VGLBSO) method. In VGLBSO, the individuals’ creation based on vector grouping learning (IC-VGL) scheme is first developed to improve the population diversity and compromise the global exploration and local exploitation capability. Moreover, a hybrid individuals’ update (H-IU) scheme is established by reasonably combing two different individuals’ update schemes, which further compromises the global exploration and local exploitation capability. Finally, the random grouping (RG) scheme, instead of K-means grouping is allowed to shrink the computational cost and maintain the diversity of the information exchange between different individuals. Twenty-eight popular benchmark functions are used to compare VGLBSO with 12 BSO and nine swarm intelligence methods. Experimental results present that VGLBSO achieves the best overall performance including the global search ability, convergence speed, and scalability amongst all the compared algorithms

    Dynamical Systems

    Get PDF
    Complex systems are pervasive in many areas of science integrated in our daily lives. Examples include financial markets, highway transportation networks, telecommunication networks, world and country economies, social networks, immunological systems, living organisms, computational systems and electrical and mechanical structures. Complex systems are often composed of a large number of interconnected and interacting entities, exhibiting much richer global scale dynamics than the properties and behavior of individual entities. Complex systems are studied in many areas of natural sciences, social sciences, engineering and mathematical sciences. This special issue therefore intends to contribute towards the dissemination of the multifaceted concepts in accepted use by the scientific community. We hope readers enjoy this pertinent selection of papers which represents relevant examples of the state of the art in present day research. [...

    自然に学ぶ知的アルゴリズムによる最適化及び予測問題に関する研究

    Get PDF
    富山大学・富理工博甲第147号・劉燕婷・2018/09/28富山大学201

    Simplex search-based brain storm optimization

    Get PDF
    Through modeling human's brainstorming process, the brain storm optimization (BSO) algorithm has become a promising population-based evolutionary algorithm. However, BSO is pointed out that it possesses a degenerated L-curve phenomenon, i.e., it often gets near optimum quickly but needs much more cost to improve the accuracy. To overcome this question in this paper, an excellent direct search-based local solver, the Nelder-Mead Simplex method is adopted in BSO. Through combining BSO's exploration ability and NMS's exploitation ability together, a simplex search-based BSO (Simplex-BSO) is developed via a better balance between global exploration and local exploitation. Simplex-BSO is shown to be able to eliminate the degenerated L-curve phenomenon on unimodal functions, and alleviate significantly this phenomenon on multimodal functions. Large number of experimental results shows that Simplex-BSO is a promising algorithm for global optimization problems

    Comprehensive Taxonomies of Nature- and Bio-inspired Optimization: Inspiration versus Algorithmic Behavior, Critical Analysis and Recommendations

    Full text link
    In recent years, a great variety of nature- and bio-inspired algorithms has been reported in the literature. This algorithmic family simulates different biological processes observed in Nature in order to efficiently address complex optimization problems. In the last years the number of bio-inspired optimization approaches in literature has grown considerably, reaching unprecedented levels that dark the future prospects of this field of research. This paper addresses this problem by proposing two comprehensive, principle-based taxonomies that allow researchers to organize existing and future algorithmic developments into well-defined categories, considering two different criteria: the source of inspiration and the behavior of each algorithm. Using these taxonomies we review more than three hundred publications dealing with nature-inspired and bio-inspired algorithms, and proposals falling within each of these categories are examined, leading to a critical summary of design trends and similarities between them, and the identification of the most similar classical algorithm for each reviewed paper. From our analysis we conclude that a poor relationship is often found between the natural inspiration of an algorithm and its behavior. Furthermore, similarities in terms of behavior between different algorithms are greater than what is claimed in their public disclosure: specifically, we show that more than one-third of the reviewed bio-inspired solvers are versions of classical algorithms. Grounded on the conclusions of our critical analysis, we give several recommendations and points of improvement for better methodological practices in this active and growing research field.Comment: 76 pages, 6 figure

    Life is an Adventure! An agent-based reconciliation of narrative and scientific worldviews\ud

    Get PDF
    The scientific worldview is based on laws, which are supposed to be certain, objective, and independent of time and context. The narrative worldview found in literature, myth and religion, is based on stories, which relate the events experienced by a subject in a particular context with an uncertain outcome. This paper argues that the concept of “agent”, supported by the theories of evolution, cybernetics and complex adaptive systems, allows us to reconcile scientific and narrative perspectives. An agent follows a course of action through its environment with the aim of maximizing its fitness. Navigation along that course combines the strategies of regulation, exploitation and exploration, but needs to cope with often-unforeseen diversions. These can be positive (affordances, opportunities), negative (disturbances, dangers) or neutral (surprises). The resulting sequence of encounters and actions can be conceptualized as an adventure. Thus, the agent appears to play the role of the hero in a tale of challenge and mystery that is very similar to the "monomyth", the basic storyline that underlies all myths and fairy tales according to Campbell [1949]. This narrative dynamics is driven forward in particular by the alternation between prospect (the ability to foresee diversions) and mystery (the possibility of achieving an as yet absent prospect), two aspects of the environment that are particularly attractive to agents. This dynamics generalizes the scientific notion of a deterministic trajectory by introducing a variable “horizon of knowability”: the agent is never fully certain of its further course, but can anticipate depending on its degree of prospect
    corecore