78 research outputs found

    Optimisation of flow chemistry: tools and algorithms

    Get PDF
    The coupling of flow chemistry with automated laboratory equipment has become increasingly common and used to support the efficient manufacturing of chemicals. A variety of reactors and analytical techniques have been used in such configurations for investigating and optimising the processing conditions of different reactions. However, the integrated reactors used thus far have been constrained to single phase mixing, greatly limiting the scope of reactions for such studies. This thesis presents the development and integration of a millilitre-scale CSTR, the fReactor, that is able to process multiphase flows, thus broadening the range of reactions susceptible of being investigated in this way. Following a thorough review of the literature covering the uses of flow chemistry and lab-scale reactor technology, insights on the design of a temperature-controlled version of the fReactor with an accuracy of ±0.3 ºC capable of cutting waiting times 44% when compared to the previous reactor are given. A demonstration of its use is provided for which the product of a multiphasic reaction is analysed automatically under different reaction conditions according to a sampling plan. Metamodeling and cross-validation techniques are applied to these results, where single and multi-objective optimisations are carried out over the response surface models of different metrics to illustrate different trade-offs between them. The use of such techniques allowed reducing the error incurred by the common least squares polynomial fitting by over 12%. Additionally, a demonstration of the fReactor as a tool for synchrotron X-Ray Diffraction is also carried out by means of successfully assessing the change in polymorph caused by solvent switching, this being the first synchrotron experiment using this sort of device. The remainder of the thesis focuses on applying the same metamodeling and cross-validation techniques used previously, in the optimisation of the design of a miniaturised continuous oscillatory baffled reactor. However, rather than using these techniques with physical experimentation, they are used in conjunction with computational fluid dynamics. This reactor shows a better residence time distribution than its CSTR counterparts. Notably, the effect of the introduction of baffle offsetting in a plate design of the reactor is identified as a key parameter in giving a narrow residence time distribution and good mixing. Under this configuration it is possible to reduce the RTD variance by 45% and increase the mixing efficiency by 60% when compared to the best performing opposing baffles geometry

    Complexity, Emergent Systems and Complex Biological Systems:\ud Complex Systems Theory and Biodynamics. [Edited book by I.C. Baianu, with listed contributors (2011)]

    Get PDF
    An overview is presented of System dynamics, the study of the behaviour of complex systems, Dynamical system in mathematics Dynamic programming in computer science and control theory, Complex systems biology, Neurodynamics and Psychodynamics.\u

    Advances in Supercapacitor Technology and Applications

    Get PDF
    Energy storage is a key topic for research, industry, and business, which is gaining increasing interest. Any available energy-storage technology (batteries, fuel cells, flywheels, and so on) can cover a limited part of the power-energy plane and is characterized by some inherent drawback. Supercapacitors (also known as ultracapacitors, electrochemical capacitors, pseudocapacitors, or double-layer capacitors) feature exceptional capacitance values, creating new scenarios and opportunities in both research and industrial applications, partly because the related market is relatively recent. In practice, supercapacitors can offer a trade-off between the high specific energy of batteries and the high specific power of traditional capacitors. Developments in supercapacitor technology and supporting electronics, combined with reductions in costs, may revolutionize everything from large power systems to consumer electronics. The potential benefits of supercapacitors move from the progresses in the technological processes but can be effective by the availability of the proper tools for testing, modeling, diagnosis, sizing, management and technical-economic analyses. This book collects some of the latest developments in the field of supercapacitors, ranging from new materials to practical applications, such as energy storage, uninterruptible power supplies, smart grids, electrical vehicles, advanced transportation and renewable sources

    Advanced Knowledge Application in Practice

    Get PDF
    The integration and interdependency of the world economy leads towards the creation of a global market that offers more opportunities, but is also more complex and competitive than ever before. Therefore widespread research activity is necessary if one is to remain successful on the market. This book is the result of research and development activities from a number of researchers worldwide, covering concrete fields of research

    Online learning of physics during a pandemic: A report from an academic experience in Italy

    Get PDF
    The arrival of the Sars-Cov II has opened a new window on teaching physics in academia. Frontal lectures have left space for online teaching, teachers have been faced with a new way of spreading knowledge, adapting contents and modalities of their courses. Students have faced up with a new way of learning physics, which relies on free access to materials and their informatics knowledge. We decided to investigate how online didactics has influenced students’ assessments, motivation, and satisfaction in learning physics during the pandemic in 2020. The research has involved bachelor (n = 53) and master (n = 27) students of the Physics Department at the University of Cagliari (N = 80, 47 male; 33 female). The MANOVA supported significant mean differences about gender and university level with higher values for girls and master students in almost all variables investigated. The path analysis showed that student-student, student-teacher interaction, and the organization of the courses significantly influenced satisfaction and motivation in learning physics. The results of this study can be used to improve the standards of teaching in physics at the University of Cagliar

    Report / Institute für Physik

    Get PDF
    The 2017 Report of the Physics Institutes of the Universität Leipzig provides an overview of the structure and research activities of the three institutes. We are happy to announce that Prof. Dr. Caudia Schnohr from Universität Jena will join the Felix Bloch Institute for Solid State Physics beginning 2019 filling the vacant position in the department for Solid State Optics. Dr. Johannes Deiglmayr from ETH Zurich will establish an independent department for Quantum Optics at the same institute

    Using MapReduce Streaming for Distributed Life Simulation on the Cloud

    Get PDF
    Distributed software simulations are indispensable in the study of large-scale life models but often require the use of technically complex lower-level distributed computing frameworks, such as MPI. We propose to overcome the complexity challenge by applying the emerging MapReduce (MR) model to distributed life simulations and by running such simulations on the cloud. Technically, we design optimized MR streaming algorithms for discrete and continuous versions of Conway’s life according to a general MR streaming pattern. We chose life because it is simple enough as a testbed for MR’s applicability to a-life simulations and general enough to make our results applicable to various lattice-based a-life models. We implement and empirically evaluate our algorithms’ performance on Amazon’s Elastic MR cloud. Our experiments demonstrate that a single MR optimization technique called strip partitioning can reduce the execution time of continuous life simulations by 64%. To the best of our knowledge, we are the first to propose and evaluate MR streaming algorithms for lattice-based simulations. Our algorithms can serve as prototypes in the development of novel MR simulation algorithms for large-scale lattice-based a-life models.https://digitalcommons.chapman.edu/scs_books/1014/thumbnail.jp
    • …
    corecore