929 research outputs found

    The distribution of "time of flight" in three dimensional stationary chaotic advection

    Full text link
    The distributions of "time of flight" (time spent by a single fluid particle between two crossings of the Poincar\'e section) are investigated for five different 3D stationary chaotic mixers. Above all, we study the large tails of those distributions, and show that mainly two types of behaviors are encountered. In the case of slipping walls, as expected, we obtain an exponential decay, which, however, does not scale with the Lyapunov exponent. Using a simple model, we suggest that this decay is related to the negative eigenvalues of the fixed points of the flow. When no-slip walls are considered, as predicted by the model, the behavior is radically dfferent, with a very large tail following a power law with an exponent close to -3

    Chaotic semigroups from second order partial differential equations

    Get PDF
    [EN] We give general conditions on given parameters to ensure Devaney and distributional chaos for the solution C-0-semigroup corresponding to a class of second-order partial differential equations. We also provide a critical parameter that led us to distinguish between stability and chaos for these semigroups. In the case of chaos, we prove that the Co-semigroup admits a strongly mixing measure with full support. We also give concrete examples of partial differential equations, such as the telegraph equation, whose solutions satisfy these properties. (C) 2017 Elsevier Inc. All rights reserved.The first and third authors are supported in part by MINECO and FEDER, grant MTM2016-75963-P. The second author is partially supported by CONICYT, under Fondecyt Grant number 1140258 and CONICYT-PIA, Anillo ACT1416.Conejero, JA.; Lizama, C.; Murillo Arcila, M. (2017). Chaotic semigroups from second order partial differential equations. Journal of Mathematical Analysis and Applications. 456(1):402-411. https://doi.org/10.1016/j.jmaa.2017.07.013S402411456

    Chaotic asymptotic behaviour of the solutions of the Lighthill Whitham Richards equation

    Full text link
    [EN] The phenomenon of chaos has been exhibited in mathematical nonlinear models that describe traffic flows, see, for instance (Li and Gao in Modern Phys Lett B 18(26-27):1395-1402, 2004; Li in Phys. D Nonlinear Phenom 207(1-2):41-51, 2005). At microscopic level, Devaney chaos and distributional chaos have been exhibited for some car-following models, such as the quick-thinking-driver model and the forward and backward control model (Barrachina et al. in 2015; Conejero et al. in Semigroup Forum, 2015). We present here the existence of chaos for the macroscopic model given by the Lighthill Whitham Richards equation.The authors are supported by MEC Project MTM2013-47093-P. The second and third authors are supported by GVA, Project PROMETEOII/2013/013Conejero, JA.; MartĂ­nez JimĂ©nez, F.; Peris Manguillot, A.; RĂłdenas EscribĂĄ, FDA. (2016). Chaotic asymptotic behaviour of the solutions of the Lighthill Whitham Richards equation. Nonlinear Dynamics. 84(1):127-133. https://doi.org/10.1007/s11071-015-2245-4S127133841Albanese, A.A., Barrachina, X., Mangino, E.M., Peris, A.: Distributional chaos for strongly continuous semigroups of operators. Commun. Pure Appl. Anal. 12(5), 2069–2082 (2013)Aroza, J., Peris, A.: Chaotic behaviour of birth-and-death models with proliferation. J. Differ. Equ. Appl. 18(4), 647–655 (2012)Banasiak, J., Lachowicz, M.: Chaos for a class of linear kinetic models. C. R. Acad. Sci. Paris SĂ©r. II 329, 439–444 (2001)Banasiak, J., Lachowicz, M.: Topological chaos for birth-and-death-type models with proliferation. Math. Models Methods Appl. Sci. 12(6), 755–775 (2002)Banasiak, J., MoszyƄski, M.: A generalization of Desch–Schappacher–Webb criteria for chaos. Discrete Contin. Dyn. Syst. 12(5), 959–972 (2005)Banasiak, J., MoszyƄski, M.: Dynamics of birth-and-death processes with proliferation—stability and chaos. Discrete Contin. Dyn. Syst. 29(1), 67–79 (2011)Barrachina, X., Conejero, J.A.: Devaney chaos and distributional chaos in the solution of certain partial differential equations. Abstr. Appl. Anal. Art. ID 457019, 11 (2012)Barrachina, X., Conejero, J.A., Murillo-Arcila, M., Seoane-SepĂșlveda, J.B.: Distributional chaos for the forward and backward control traffic model (2015, preprint)Bayart, F., Matheron, É.: Dynamics of Linear Operators, Cambridge Tracts in Mathematics, vol. 179. Cambridge University Press, Cambridge (2009)Bayart, F., Matheron, É.: Mixing operators and small subsets of the circle. J Reine Angew. Math. (2015, to appear)BermĂșdez, T., Bonilla, A., Conejero, J.A., Peris, A.: Hypercyclic, topologically mixing and chaotic semigroups on Banach spaces. Stud. Math. 170(1), 57–75 (2005)BermĂșdez, T., Bonilla, A., MartĂ­nez-GimĂ©nez, F., Peris, A.: Li-Yorke and distributionally chaotic operators. J. Math. Anal. Appl. 373(1), 83–93 (2011)Bernardes Jr, N.C., Bonilla, A., MĂŒller, V., Peris, A.: Distributional chaos for linear operators. J. Funct. Anal. 265(9), 2143–2163 (2013)Brackstone, M., McDonald, M.: Car-following: a historical review. Transp. Res. Part F Traffic Psychol. Behav. 2(4), 181–196 (1999)Conejero, J.A., Lizama, C., Rodenas, F.: Chaotic behaviour of the solutions of the Moore–Gibson–Thompson equation. Appl. Math. Inf. Sci. 9(5), 1–6 (2015)Conejero, J.A., Mangino, E.M.: Hypercyclic semigroups generated by Ornstein-Uhlenbeck operators. Mediterr. J. Math. 7(1), 101–109 (2010)Conejero, J.A., MĂŒller, V., Peris, A.: Hypercyclic behaviour of operators in a hypercyclic C0C_0 C 0 -semigroup. J. Funct. Anal. 244, 342–348 (2007)Conejero, J.A., Murillo-Arcila, M., Seoane-SepĂșlveda, J.B.: Linear chaos for the quick-thinking-driver model. Semigroup Forum (2015). doi: 10.1007/s00233-015-9704-6Conejero, J.A., Peris, A., Trujillo, M.: Chaotic asymptotic behavior of the hyperbolic heat transfer equation solutions. Int. J. Bifur. Chaos Appl. Sci. Eng. 20(9), 2943–2947 (2010)Conejero, J.A., Rodenas, F., Trujillo, M.: Chaos for the hyperbolic bioheat equation. Discrete Contin. Dyn. Syst. 35(2), 653–668 (2015)Desch, W., Schappacher, W., Webb, G.F.: Hypercyclic and chaotic semigroups of linear operators. Ergod. Theory Dyn. Syst. 17(4), 793–819 (1997)Engel, K.-J., Nagel, R.: One-parameter semigroups for linear evolution equations, Graduate Texts in Mathematics, vol. 194. Springer, New York (2000). With contributions by S. Brendle, M. Campiti, T. Hahn, G. Metafune, G. Nickel, D. Pallara, C. Perazzoli, A. Rhandi, S. Romanelli and R. SchnaubeltGrosse-Erdmann, K.-G., Peris Manguillot, A.: Linear Chaos. Universitext. Springer, London (2011)Herzog, G.: On a universality of the heat equation. Math. Nachr. 188, 169–171 (1997)Li, K., Gao, Z.: Nonlinear dynamics analysis of traffic time series. Modern Phys. Lett. B 18(26–27), 1395–1402 (2004)Li, T.: Nonlinear dynamics of traffic jams. Phys. D Nonlinear Phenom. 207(1–2), 41–51 (2005)Lustri, C.: Continuum Modelling of Traffic Flow. Special Topic Report. Oxford University, Oxford (2010)Lighthill, M.J., Whitham, G.B.: On kinematic waves. II. A theory of traffic flow on long crowded roads. Proc. R. Soc. Lond. Ser. A. 229, 317–345 (1955)Maerivoet, S., De Moor, B.: Cellular automata models of road traffic. Phys. Rep. 419(1), 1–64 (2005)Mangino, E.M., Peris, A.: Frequently hypercyclic semigroups. Stud. Math. 202(3), 227–242 (2011)Murillo-Arcila, M., Peris, A.: Strong mixing measures for linear operators and frequent hypercyclicity. J. Math. Anal. Appl. 398, 462–465 (2013)Murillo-Arcila, M., Peris, A.: Strong mixing measures for C0C_0 C 0 -semigroups. Rev. R. Acad. Cienc. Exactas FĂ­s. Nat. Ser. A Math. RACSAM 109(1), 101–115 (2015)Pazy, A.: Semigroups of Linear Operators and Applications to Partial Differential Equations, Applied Mathematical Sciences, vol. 44. Springer, New York (1983)Protopopescu, V., Azmy, Y.Y.: Topological chaos for a class of linear models. Math. Models Methods Appl. Sci. 2(1), 79–90 (1992)Richards, P.I.: Shock waves on the highway. Oper. Res. 4, 42–51 (1956

    Linear dynamics of semigroups generated by differential operators

    Get PDF
    [EN] During the last years, several notions have been introduced for describing the dynamical behavior of linear operators on infinite-dimensional spaces, such as hypercyclicity, chaos in the sense of Devaney, chaos in the sense of Li-Yorke, subchaos, mixing and weakly mixing properties, and frequent hypercyclicity, among others. These notions have been extended, as far as possible, to the setting of C0-semigroups of linear and continuous operators. We will review some of these notions and we will discuss basic properties of the dynamics of C0-semigroups. We will also study in detail the dynamics of the translation C0-semigroup on weighted spaces of integrable functions and of continuous functions vanishing at infinity. Using the comparison lemma, these results can be transferred to the solution C0-semigroups of some partial differential equations. Additionally, we will also visit the chaos for infinite systems of ordinary differential equations, that can be of interest for representing birth-and-death process or car-following traffic models.The first, third and fourth authors were supported by MINECO and FEDER, grant MTM2016-75963-P. The second author has been partially supported by CONICYT under FONDECYT grant number 1140258 and CONICYT-PIA-Anillo ACT1416.Conejero, JA.; Lizama, C.; Murillo Arcila, M.; Peris Manguillot, A. (2017). Linear dynamics of semigroups generated by differential operators. Open Mathematics. 15(1):745-767. https://doi.org/10.1515/math-2017-0065S745767151Herzog, G. (1997). On a Universality of the Heat Equation. Mathematische Nachrichten, 188(1), 169-171. doi:10.1002/mana.19971880110Kalmes, T. (2010). Hypercyclicity and mixing for cosine operator functions generated by second order partial differential operators. Journal of Mathematical Analysis and Applications, 365(1), 363-375. doi:10.1016/j.jmaa.2009.10.063Bayart, F., & Grivaux, S. (2006). Frequently hypercyclic operators. Transactions of the American Mathematical Society, 358(11), 5083-5117. doi:10.1090/s0002-9947-06-04019-0BermĂșdez, T., Bonilla, A., MartĂ­nez-GimĂ©nez, F., & Peris, A. (2011). Li–Yorke and distributionally chaotic operators. Journal of Mathematical Analysis and Applications, 373(1), 83-93. doi:10.1016/j.jmaa.2010.06.011Gethner, R. M., & Shapiro, J. H. (1987). Universal vectors for operators on spaces of holomorphic functions. Proceedings of the American Mathematical Society, 100(2), 281-281. doi:10.1090/s0002-9939-1987-0884467-4Kalmes, T. (2006). On chaotic C0C_0-semigroups and infinitely regular hypercyclic vectors. Proceedings of the American Mathematical Society, 134(10), 2997-3002. doi:10.1090/s0002-9939-06-08391-2Banasiak, J., & MoszyƄski, M. (2008). Hypercyclicity and chaoticity spaces of C0C_0 semigroups. Discrete & Continuous Dynamical Systems - A, 20(3), 577-587. doi:10.3934/dcds.2008.20.577UCHI, S. (1973). Semi-groups of operators in locally convex spaces. Journal of the Mathematical Society of Japan, 25(2), 265-276. doi:10.2969/jmsj/02520265Mangino, E. M., & Peris, A. (2011). Frequently hypercyclic semigroups. Studia Mathematica, 202(3), 227-242. doi:10.4064/sm202-3-2Conejero, J. A., MartĂ­nez-GimĂ©nez, F., Peris, A., & RĂłdenas, F. (2015). Chaotic asymptotic behaviour of the solutions of the Lighthill–Whitham–Richards equation. Nonlinear Dynamics, 84(1), 127-133. doi:10.1007/s11071-015-2245-4Costakis, G., & Peris, A. (2002). Hypercyclic semigroups and somewhere dense orbits. Comptes Rendus Mathematique, 335(11), 895-898. doi:10.1016/s1631-073x(02)02572-4Murillo-Arcila, M., & Peris, A. (2014). Chaotic Behaviour on Invariant Sets of Linear Operators. Integral Equations and Operator Theory, 81(4), 483-497. doi:10.1007/s00020-014-2188-zMurillo-Arcila, M., & Peris, A. (2013). Strong mixing measures for linear operators and frequent hypercyclicity. Journal of Mathematical Analysis and Applications, 398(2), 462-465. doi:10.1016/j.jmaa.2012.08.050Marchand, R., McDevitt, T., & Triggiani, R. (2012). An abstract semigroup approach to the third-order Moore-Gibson-Thompson partial differential equation arising in high-intensity ultrasound: structural decomposition, spectral analysis, exponential stability. Mathematical Methods in the Applied Sciences, 35(15), 1896-1929. doi:10.1002/mma.1576Grosse-Erdmann, K.-G. (2000). Hypercyclic and chaotic weighted shifts. Studia Mathematica, 139(1), 47-68. doi:10.4064/sm-139-1-47-68Birkhoff, G. D. (1922). Surface transformations and their dynamical applications. Acta Mathematica, 43(0), 1-119. doi:10.1007/bf02401754DESCH, W., SCHAPPACHER, W., & WEBB, G. F. (1997). Hypercyclic and chaotic semigroups of linear operators. Ergodic Theory and Dynamical Systems, 17(4), 793-819. doi:10.1017/s0143385797084976Li, T.-Y., & Yorke, J. A. (1975). Period Three Implies Chaos. The American Mathematical Monthly, 82(10), 985-992. doi:10.1080/00029890.1975.11994008Bernal-GonzĂĄlez, L. (1999). Hypercyclic Sequences of Differential and Antidifferential Operators. Journal of Approximation Theory, 96(2), 323-337. doi:10.1006/jath.1998.3237LI, K., & GAO, Z. (2004). NONLINEAR DYNAMICS ANALYSIS OF TRAFFIC TIME SERIES. Modern Physics Letters B, 18(26n27), 1395-1402. doi:10.1142/s0217984904007943Barrachina, X., & Peris, A. (2012). Distributionally chaotic translation semigroups. Journal of Difference Equations and Applications, 18(4), 751-761. doi:10.1080/10236198.2011.625945Chang, S.-J., & Chen, C.-C. (2013). Topological mixing for cosine operator functions generated by shifts. Topology and its Applications, 160(2), 382-386. doi:10.1016/j.topol.2012.11.018Salas, H. N. (1995). Hypercyclic weighted shifts. Transactions of the American Mathematical Society, 347(3), 993-1004. doi:10.1090/s0002-9947-1995-1249890-6Aron, R. M., Seoane-SepĂșlveda, J. B., & Weber, A. (2005). Chaos on function spaces. Bulletin of the Australian Mathematical Society, 71(3), 411-415. doi:10.1017/s0004972700038417Desch, W., & Schappacher, W. (2008). Hypercyclicity of Semigroups is a Very Unstable Property. Mathematical Modelling of Natural Phenomena, 3(7), 148-160. doi:10.1051/mmnp:2008047Albanese, A., Barrachina, X., Mangino, E. M., & Peris, A. (2013). Distributional chaos for strongly continuous semigroups of operators. Communications on Pure and Applied Analysis, 12(5), 2069-2082. doi:10.3934/cpaa.2013.12.2069Conejero, J. A., Lizama, C., & Rodenas, F. (2016). Dynamics of the solutions of the water hammer equations. Topology and its Applications, 203, 67-83. doi:10.1016/j.topol.2015.12.076Rubinow, S. I. (1968). A Maturity-Time Representation for Cell Populations. Biophysical Journal, 8(10), 1055-1073. doi:10.1016/s0006-3495(68)86539-7BrzeĆșniak, Z., & Dawidowicz, A. L. (2008). On periodic solutions to the von Foerster-Lasota equation. Semigroup Forum, 78(1), 118-137. doi:10.1007/s00233-008-9120-2Frerick, L., JordĂĄ, E., Kalmes, T., & Wengenroth, J. (2014). Strongly continuous semigroups on some FrĂ©chet spaces. Journal of Mathematical Analysis and Applications, 412(1), 121-124. doi:10.1016/j.jmaa.2013.10.053Rudnicki, R. (2015). An ergodic theory approach to chaos. Discrete & Continuous Dynamical Systems - A, 35(2), 757-770. doi:10.3934/dcds.2015.35.757JI, L., & WEBER, A. (2009). Dynamics of the heat semigroup on symmetric spaces. Ergodic Theory and Dynamical Systems, 30(2), 457-468. doi:10.1017/s0143385709000133Ovsepian, R., & PeƂczyƄski, A. (1975). On the existence of a fundamental total and bounded biorthogonal sequence in every separable Banach space, and related constructions of uniformly bounded orthonormal systems in LÂČ. Studia Mathematica, 54(2), 149-159. doi:10.4064/sm-54-2-149-159Conejero, J. A., & Mangino, E. M. (2010). Hypercyclic Semigroups Generated by Ornstein-Uhlenbeck Operators. Mediterranean Journal of Mathematics, 7(1), 101-109. doi:10.1007/s00009-010-0030-7MARTÍNEZ-GIMÉNEZ, F., & PERIS, A. (2002). CHAOS FOR BACKWARD SHIFT OPERATORS. International Journal of Bifurcation and Chaos, 12(08), 1703-1715. doi:10.1142/s0218127402005418Banks, J., Brooks, J., Cairns, G., Davis, G., & Stacey, P. (1992). On Devaney’s Definition of Chaos. The American Mathematical Monthly, 99(4), 332-334. doi:10.1080/00029890.1992.11995856Rolewicz, S. (1969). On orbits of elements. Studia Mathematica, 32(1), 17-22. doi:10.4064/sm-32-1-17-22Bayart, F., & Grivaux, S. (2005). Hypercyclicity and unimodular point spectrum. Journal of Functional Analysis, 226(2), 281-300. doi:10.1016/j.jfa.2005.06.001Bayart, F., & Matheron, É. (2007). Hypercyclic operators failing the Hypercyclicity Criterion on classical Banach spaces. Journal of Functional Analysis, 250(2), 426-441. doi:10.1016/j.jfa.2007.05.001Peris, A., & Saldivia, L. (2005). Syndetically Hypercyclic Operators. Integral Equations and Operator Theory, 51(2), 275-281. doi:10.1007/s00020-003-1253-9Metz, J. A. J., StaƈkovĂĄ, K., & Johansson, J. (2015). The canonical equation of adaptive dynamics for life histories: from fitness-returns to selection gradients and Pontryagin’s maximum principle. Journal of Mathematical Biology, 72(4), 1125-1152. doi:10.1007/s00285-015-0938-4PROTOPOPESCU, V., & AZMY, Y. Y. (1992). TOPOLOGICAL CHAOS FOR A CLASS OF LINEAR MODELS. Mathematical Models and Methods in Applied Sciences, 02(01), 79-90. doi:10.1142/s0218202592000065Banasiak, J., & MoszyƄski, M. (2011). Dynamics of birth-and-death processes with proliferation - stability and chaos. Discrete & Continuous Dynamical Systems - A, 29(1), 67-79. doi:10.3934/dcds.2011.29.67A. Conejero, J., & Peris, A. (2009). Hypercyclic translation C0C_0-semigroups on complex sectors. Discrete & Continuous Dynamical Systems - A, 25(4), 1195-1208. doi:10.3934/dcds.2009.25.1195Conejero, J. A. (2007). On the Existence of Transitive and Topologically Mixing Semigroups. Bulletin of the Belgian Mathematical Society - Simon Stevin, 14(3), 463-471. doi:10.36045/bbms/1190994207Grosse-Erdmann, K.-G. (1999). Universal families and hypercyclic operators. Bulletin of the American Mathematical Society, 36(03), 345-382. doi:10.1090/s0273-0979-99-00788-0Banasiak, J., Lachowicz, M., & Moszynski, M. (2006). Semigroups for Generalized Birth-and-Death Equations in lp Spaces. Semigroup Forum, 73(2), 175-193. doi:10.1007/s00233-006-0621-xCONEJERO, J. A., PERIS, A., & TRUJILLO, M. (2010). CHAOTIC ASYMPTOTIC BEHAVIOR OF THE HYPERBOLIC HEAT TRANSFER EQUATION SOLUTIONS. International Journal of Bifurcation and Chaos, 20(09), 2943-2947. doi:10.1142/s0218127410027489BermĂșdez, T., Bonilla, A., Conejero, J. A., & Peris, A. (2005). Hypercyclic, topologically mixing and chaotic semigroups on Banach spaces. Studia Mathematica, 170(1), 57-75. doi:10.4064/sm170-1-3Aroza, J., & Peris, A. (2012). Chaotic behaviour of birth-and-death models with proliferation. Journal of Difference Equations and Applications, 18(4), 647-655. doi:10.1080/10236198.2011.631535deLaubenfels, R., Emamirad, H., & Protopopescu, V. (2000). Linear Chaos and Approximation. Journal of Approximation Theory, 105(1), 176-187. doi:10.1006/jath.2000.3465Aron, R., & Markose, D. (2004). ON UNIVERSAL FUNCTIONS. Journal of the Korean Mathematical Society, 41(1), 65-76. doi:10.4134/jkms.2004.41.1.065Chang, Y.-H., & Hong, C.-H. (2012). THE CHAOS OF THE SOLUTION SEMIGROUP FOR THE QUASI-LINEAR LASOTA EQUATION. Taiwanese Journal of Mathematics, 16(5), 1707-1717. doi:10.11650/twjm/1500406791Badea, C., & Grivaux, S. (2007). Unimodular eigenvalues, uniformly distributed sequences and linear dynamics. Advances in Mathematics, 211(2), 766-793. doi:10.1016/j.aim.2006.09.010Wijngaarden, L. V. (1972). One-Dimensional Flow of Liquids Containing Small Gas Bubbles. Annual Review of Fluid Mechanics, 4(1), 369-396. doi:10.1146/annurev.fl.04.010172.002101Dyson, J., Villella-Bressan, R., & Webb, G. (1997). Hypercyclicity of solutions of a transport equation with delays. Nonlinear Analysis: Theory, Methods & Applications, 29(12), 1343-1351. doi:10.1016/s0362-546x(96)00192-7Eringen, A. C. (1990). Theory of thermo-microstretch fluids and bubbly liquids. International Journal of Engineering Science, 28(2), 133-143. doi:10.1016/0020-7225(90)90063-oBayart, F., & BermĂșdez, T. (2009). Semigroups of chaotic operators. Bulletin of the London Mathematical Society, 41(5), 823-830. doi:10.1112/blms/bdp055Bernardes, N. C., Bonilla, A., MĂŒller, V., & Peris, A. (2013). Distributional chaos for linear operators. Journal of Functional Analysis, 265(9), 2143-2163. doi:10.1016/j.jfa.2013.06.019Webb, G. F. (1987). Random transitions, size control, and inheritance in cell population dynamics. Mathematical Biosciences, 85(1), 71-91. doi:10.1016/0025-5564(87)90100-3Bartoll, S., MartĂ­nez-GimĂ©nez, F., & Peris, A. (2016). Operators with the specification property. Journal of Mathematical Analysis and Applications, 436(1), 478-488. doi:10.1016/j.jmaa.2015.12.004Godefroy, G., & Shapiro, J. H. (1991). Operators with dense, invariant, cyclic vector manifolds. Journal of Functional Analysis, 98(2), 229-269. doi:10.1016/0022-1236(91)90078-jBAYART, F., & RUZSA, I. Z. (2013). Difference sets and frequently hypercyclic weighted shifts. Ergodic Theory and Dynamical Systems, 35(3), 691-709. doi:10.1017/etds.2013.77Bartoll, S., MartĂ­nez-GimĂ©nez, F., & Peris, A. (2012). The specification property for backward shifts. Journal of Difference Equations and Applications, 18(4), 599-605. doi:10.1080/10236198.2011.586636Li, T. (2005). Nonlinear dynamics of traffic jams. Physica D: Nonlinear Phenomena, 207(1-2), 41-51. doi:10.1016/j.physd.2005.05.011Dawidowicz, A. L., & Poskrobko, A. (2008). On chaotic and stable behaviour of the von Foerster–Lasota equation in some Orlicz spaces. Proceedings of the Estonian Academy of Sciences, 57(2), 61. doi:10.3176/proc.2008.2.01Aroza, J., Kalmes, T., & Mangino, E. (2014). ChaoticC0-semigroups induced by semiflows in Lebesgue and Sobolev spaces. Journal of Mathematical Analysis and Applications, 412(1), 77-98. doi:10.1016/j.jmaa.2013.10.002BĂšs, J., & Peris, A. (1999). Hereditarily Hypercyclic Operators. Journal of Functional Analysis, 167(1), 94-112. doi:10.1006/jfan.1999.3437MartĂ­nez-GimĂ©nez, F., Oprocha, P., & Peris, A. (2009). Distributional chaos for backward shifts. Journal of Mathematical Analysis and Applications, 351(2), 607-615. doi:10.1016/j.jmaa.2008.10.049Murillo-Arcila, M., Miana, P. J., Kostić, M., & Conejero, J. A. (2016). Distributionally chaotic families of operators on FrĂ©chet spaces. Communications on Pure and Applied Analysis, 15(5), 1915-1939. doi:10.3934/cpaa.2016022Rudnicki, R. (2004). Chaos for some infinite-dimensional dynamical systems. Mathematical Methods in the Applied Sciences, 27(6), 723-738. doi:10.1002/mma.498Albanese, A. A., Bonet, J., & Ricker, W. J. (2010). C0-semigroups and mean ergodic operators in a class of FrĂ©chet spaces. Journal of Mathematical Analysis and Applications, 365(1), 142-157. doi:10.1016/j.jmaa.2009.10.014Lasota, A., Mackey, M. C., & WaĆŒewska-CzyĆŒewska, M. (1981). Minimizing therapeutically induced anemia. Journal of Mathematical Biology, 13(2), 149-158. doi:10.1007/bf00275210Wu, X. (2013). Li–Yorke chaos of translation semigroups. Journal of Difference Equations and Applications, 20(1), 49-57. doi:10.1080/10236198.2013.809712Costakis, G., & Sambarino, M. (2004). Genericity of wild holomorphic functions and common hypercyclic vectors. Advances in Mathematics, 182(2), 278-306. doi:10.1016/s0001-8708(03)00079-3Schweizer, B., & SmĂ­tal, J. (1994). Measures of chaos and a spectral decomposition of dynamical systems on the interval. Transactions of the American Mathematical Society, 344(2), 737-754. doi:10.1090/s0002-9947-1994-1227094-xBanasiak, J., Lachowicz, M., & MoszyƄski, M. (2007). Chaotic behavior of semigroups related to the process of gene amplification–deamplification with cell proliferation. Mathematical Biosciences, 206(2), 200-215. doi:10.1016/j.mbs.2005.08.004Beauzamy, B. (1987). An operator on a separable Hilbert space with many hypercyclic vectors. Studia Mathematica, 87(1), 71-78. doi:10.4064/sm-87-1-71-78Dembart, B. (1974). On the theory of semigroups of operators on locally convex spaces. Journal of Functional Analysis, 16(2), 123-160. doi:10.1016/0022-1236(74)90061-5Muñoz-FernĂĄndez, G. A., Seoane-SepĂșlveda, J. B., & Weber, A. (2011). Periods of strongly continuous semigroups. Bulletin of the London Mathematical Society, 44(3), 480-488. doi:10.1112/blms/bdr109KALMES, T. (2007). Hypercyclic, mixing, and chaotic C0-semigroups induced by semiflows. Ergodic Theory and Dynamical Systems, 27(5), 1599-1631. doi:10.1017/s0143385707000144BĂšs, J., Menet, Q., Peris, A., & Puig, Y. (2015). Recurrence properties of hypercyclic operators. Mathematische Annalen, 366(1-2), 545-572. doi:10.1007/s00208-015-1336-3Read, C. J. (1988). The invariant subspace problem for a class of Banach spaces, 2: Hypercyclic operators. Israel Journal of Mathematics, 63(1), 1-40. doi:10.1007/bf02765019BERNARDES, N. C., BONILLA, A., MÜLLER, V., & PERIS, A. (2014). Li–Yorke chaos in linear dynamics. Ergodic Theory and Dynamical Systems, 35(6), 1723-1745. doi:10.1017/etds.2014.20Conejero, J. A., Murillo-Arcila, M., & Seoane-SepĂșlveda, J. B. (2015). Linear chaos for the Quick-Thinking-Driver model. Semigroup Forum, 92(2), 486-493. doi:10.1007/s00233-015-9704-6On kinematic waves II. A theory of traffic flow on long crowded roads. (1955). Proceedings of the Royal Society of London. Series A. Mathematical and Physical Sciences, 229(1178), 317-345. doi:10.1098/rspa.1955.0089Jordan, P. M., & Feuillade, C. (2006). On the propagation of transient acoustic waves in isothermal bubbly liquids. Physics Letters A, 350(1-2), 56-62. doi:10.1016/j.physleta.2005.10.004Alberto Conejero, J., Rodenas, F., & Trujillo, M. (2015). Chaos for the Hyperbolic Bioheat Equation. Discrete & Continuous Dynamical Systems - A, 35(2), 653-668. doi:10.3934/dcds.2015.35.653Bonet, J., & Peris, A. (1998). Hypercyclic Operators on Non-normable FrĂ©chet Spaces. Journal of Functional Analysis, 159(2), 587-595. doi:10.1006/jfan.1998.3315Jordan, P. M. (2004). An analytical study of Kuznetsov’s equation: diffusive solitons, shock formation, and solution bifurcation. Physics Letters A, 326(1-2), 77-84. doi:10.1016/j.physleta.2004.03.067Bayart, F. (2010). Dynamics of holomorphic groups. Semigroup Forum, 82(2), 229-241. doi:10.1007/s00233-010-9284-4Conejero, J. A., MĂŒller, V., & Peris, A. (2007). Hypercyclic behaviour of operators in a hypercyclic C0-semigroup. Journal of Functional Analysis, 244(1), 342-348. doi:10.1016/j.jfa.2006.12.008Richards, P. I. (1956). Shock Waves on the Highway. Operations Research, 4(1), 42-51. doi:10.1287/opre.4.1.42Ansari, S. I. (1995). Hypercyclic and Cyclic Vectors. Journal of Functional Analysis, 128(2), 374-383. doi:10.1006/jfan.1995.1036Rudnicki, R. (2012). Chaoticity and invariant measures for a cell population model. Journal of Mathematical Analysis and Applications, 393(1), 151-165. doi:10.1016/j.jmaa.2012.03.055El Mourchid, S., Metafune, G., Rhandi, A., & Voigt, J. (2008). On the chaotic behaviour of size structured cell populations. Journal of Mathematical Analysis and Applications, 339(2), 918-924. doi:10.1016/j.jmaa.2007.07.034BANASIAK, J., & LACHOWICZ, M. (2002). TOPOLOGICAL CHAOS FOR BIRTH-AND-DEATH-TYPE MODELS WITH PROLIFERATION. Mathematical Models and Methods in Applied Sciences, 12(06), 755-775. doi:10.1142/s021820250200188xConejero, J. A., & Peris, A. (2005). Linear transitivity criteria. Topology and its Applications, 153(5-6), 767-773. doi:10.1016/j.topol.2005.01.009Jordan, P. M., Keiffer, R. S., & Saccomandi, G. (2014). Anomalous propagation of acoustic traveling waves in thermoviscous fluids under the Rubin–Rosenau–Gottlieb theory of dispersive media. Wave Motion, 51(2), 382-388. doi:10.1016/j.wavemoti.2013.08.009Mourchid, S. E. (2006). The Imaginary Point Spectrum and Hypercyclicity. Semigroup Forum, 73(2), 313-316. doi:10.1007/s00233-005-0533-xOprocha, P. (2006). A quantum harmonic oscillator and strong chaos. Journal of Physics A: Mathematical and General, 39(47), 14559-14565. doi:10.1088/0305-4470/39/47/003Shkarin, S. (2011). On supercyclicity of operators from a supercyclic semigroup. Journal of Mathematical Analysis and Applications, 382(2), 516-522. doi:10.1016/j.jmaa.2010.08.033Emamirad, H. (1998). Hypercyclicity in the scattering theory for linear transport equation. Transactions of the American Mathematical Society, 350(9), 3707-3716. doi:10.1090/s0002-9947-98-02062-5Kalisch, G. K. (1972). On operators on separable Banach spaces with arbitrary prescribed point spectrum. Proceedings of the American Mathematical Society, 34
    • 

    corecore