309 research outputs found

    Accretion, Outflows, and Winds of Magnetized Stars

    Full text link
    Many types of stars have strong magnetic fields that can dynamically influence the flow of circumstellar matter. In stars with accretion disks, the stellar magnetic field can truncate the inner disk and determine the paths that matter can take to flow onto the star. These paths are different in stars with different magnetospheres and periods of rotation. External field lines of the magnetosphere may inflate and produce favorable conditions for outflows from the disk-magnetosphere boundary. Outflows can be particularly strong in the propeller regime, wherein a star rotates more rapidly than the inner disk. Outflows may also form at the disk-magnetosphere boundary of slowly rotating stars, if the magnetosphere is compressed by the accreting matter. In isolated, strongly magnetized stars, the magnetic field can influence formation and/or propagation of stellar wind outflows. Winds from low-mass, solar-type stars may be either thermally or magnetically driven, while winds from massive, luminous O and B type stars are radiatively driven. In all of these cases, the magnetic field influences matter flow from the stars and determines many observational properties. In this chapter we review recent studies of accretion, outflows, and winds of magnetized stars with a focus on three main topics: (1) accretion onto magnetized stars; (2) outflows from the disk-magnetosphere boundary; and (3) winds from isolated massive magnetized stars. We show results obtained from global magnetohydrodynamic simulations and, in a number of cases compare global simulations with observations.Comment: 60 pages, 44 figure

    Global bifurcations to subcritical magnetorotational dynamo action in Keplerian shear flow

    Get PDF
    Magnetorotational dynamo action in Keplerian shear flow is a three-dimensional, non-linear magnetohydrodynamic process whose study is relevant to the understanding of accretion processes and magnetic field generation in astrophysics. Transition to this form of dynamo action is subcritical and shares many characteristics of transition to turbulence in non-rotating hydrodynamic shear flows. This suggests that these different fluid systems become active through similar generic bifurcation mechanisms, which in both cases have eluded detailed understanding so far. In this paper, we build on recent work on the two problems to investigate numerically the bifurcation mechanisms at work in the incompressible Keplerian magnetorotational dynamo problem in the shearing box framework. Using numerical techniques imported from dynamical systems research, we show that the onset of chaotic dynamo action at magnetic Prandtl numbers larger than unity is primarily associated with global homoclinic and heteroclinic bifurcations of nonlinear magnetorotational dynamo cycles. These global bifurcations are found to be supplemented by local bifurcations of cycles marking the beginning of period-doubling cascades. The results suggest that nonlinear magnetorotational dynamo cycles provide the pathway to turbulent injection of both kinetic and magnetic energy in incompressible magnetohydrodynamic Keplerian shear flow in the absence of an externally imposed magnetic field. Studying the nonlinear physics and bifurcations of these cycles in different regimes and configurations may subsequently help to better understand the physical conditions of excitation of magnetohydrodynamic turbulence and instability-driven dynamos in a variety of astrophysical systems and laboratory experiments. The detailed characterization of global bifurcations provided for this three-dimensional subcritical fluid dynamics problem may also prove useful for the problem of transition to turbulence in hydrodynamic shear flows

    Turbulent Magnetic Field Amplification from Spiral SASI Modes: Implications for Core-Collapse Supernovae and Proto-Neutron Star Magnetization

    Full text link
    We extend our investigation of magnetic field evolution in three-dimensional flows driven by the stationary accretion shock instability (SASI) with a suite of higher-resolution idealized models of the post-bounce core-collapse supernova environment. Our magnetohydrodynamic simulations vary in initial magnetic field strength, rotation rate, and grid resolution. Vigorous SASI-driven turbulence inside the shock amplifies magnetic fields exponentially; but while the amplified fields reduce the kinetic energy of small-scale flows, they do not seem to affect the global shock dynamics. The growth rate and final magnitude of the magnetic energy are very sensitive to grid resolution, and both are underestimated by the simulations. Nevertheless our simulations suggest that neutron star magnetic fields exceeding 101410^{14} G can result from dynamics driven by the SASI, \emph{even for non-rotating progenitors}.Comment: 28 pages, 17 figures, accepted for publication in the Ap

    Super-Eddington accretion; flow regimes and conditions in high-z galaxies

    Full text link
    We review and discuss theoretical studies addressing the possibility of gas accretion onto black holes occurring at rates exceeding the Eddington limit. Our focus is on the applications to the growth of black hole seeds at high redshift. We first present the general notion of Super-Eddington accretion, and then summarize the different models and numerical simulations developed to study such regime. We consider optically thick flows in accretion disks as well as in spherically symmetric envelopes, and devote particular attention to the widely adopted model based on the SLIM disk solution. While attractive for its simplicity, the SLIM disk solution is challenged by the latest generation of three-dimensional radiation (magneto)-hydrodynamical simulations, in which radiative losses can be an order of magnitude higher, and the mechanisms of radiation transport is more complex than straight advection as it takes place in a complex turbulent regime. We then discuss the gas supply rate to the sub-pc scale accretion disk or envelope from larger scales, revisiting gas inflow rates in protogalaxies under various conditions. We conclude that in the dense gaseous nuclei of high-z galaxies the conditions necessary for the onset of Super Eddington accretion regimes, such as a high optical depth and high gas supply rates from large scales, should be naturally met. Feedback from the growing BH seed should not alter significantly such conditions according to the results of radiation magneto-hydrodynamical simulations of super-critical flows in accretion disks. Furthermore, based on the required nuclear gas inflow rates and the tendency of stellar feedback to remove efficiently gas in low mass halos, we argue that super-critical accretion will be more easily achieved in relatively sizable halos, with virial masses Mvir>1010M_{\rm vir} > 10^{10} M_{\odot}, which become more common at z<15z < 15.Comment: Preprint of the chapter "Super-Eddington accretion; flow regimes and conditions in high-z galaxies", to be published in the review volume "Formation of the First Black Holes", Latif, M. and Schleicher, D. R. G., eds., World Scientific Publishing Company, 2018, pp 195-228 [ see https://www.worldscientific.com/worldscibooks/10.1142/10652

    Feedback first: the surprisingly weak effects of magnetic fields, viscosity, conduction, and metal diffusion on galaxy formation

    Get PDF
    Using high-resolution simulations with explicit treatment of stellar feedback physics based on the FIRE (Feedback in Realistic Environments) project, we study how galaxy formation and the interstellar medium (ISM) are affected by magnetic fields, anisotropic Spitzer-Braginskii conduction and viscosity, and sub-grid metal diffusion from unresolved turbulence. We consider controlled simulations of isolated (non-cosmological) galaxies but also a limited set of cosmological "zoom-in" simulations. Although simulations have shown significant effects from these physics with weak or absent stellar feedback, the effects are much weaker than those of stellar feedback when the latter is modeled explicitly. The additional physics have no systematic effect on galactic star formation rates (SFRs) . In contrast, removing stellar feedback leads to SFRs being over-predicted by factors of 10100\sim 10 -100. Without feedback, neither galactic winds nor volume filling hot-phase gas exist, and discs tend to runaway collapse to ultra-thin scale-heights with unphysically dense clumps congregating at the galactic center. With stellar feedback, a multi-phase, turbulent medium with galactic fountains and winds is established. At currently achievable resolutions and for the investigated halo mass range 10101013M10^{10}-10^{13} M_{\odot}, the additional physics investigated here (MHD, conduction, viscosity, metal diffusion) have only weak (10%\sim10\%-level) effects on regulating SFR and altering the balance of phases, outflows, or the energy in ISM turbulence, consistent with simple equipartition arguments. We conclude that galactic star formation and the ISM are primarily governed by a combination of turbulence, gravitational instabilities, and feedback. We add the caveat that AGN feedback is not included in the present work

    MHD simulations of the formation and propagation of protostellar jets to observational length scales

    Full text link
    We present 2.5-D global, ideal MHD simulations of magnetically and rotationally driven protostellar jets from Keplerian accretion discs, wherein only the initial magnetic field strength at the inner radius of the disc, BiB_{\rm i}, is varied. Using the AMR-MHD code AZEUS, we self-consistently follow the jet evolution into the observational regime (>103AU>10^3\,\mathrm{AU}) with a spatial dynamic range of 6.5×105\sim6.5\times10^5. The simulations reveal a three-component outflow: 1) A hot, dense, super-fast and highly magnetised 'jet core'; 2) a cold, rarefied, trans-fast and highly magnetised 'sheath' surrounding the jet core and extending to a tangential discontinuity; and 3) a warm, dense, trans-slow and weakly magnetised shocked ambient medium entrained by the advancing bow shock. The simulations reveal power-law relationships between BiB_{\rm i} and the jet advance speed, vjetv_{\rm jet}, the average jet rotation speed, vφ\langle v_\varphi\rangle, as well as fluxes of mass, momentum, and kinetic energy. Quantities that do not depend on BiB_{\rm i} include the plasma-β\beta of the transported material which, in all cases, seems to asymptote to order unity. Jets are launched by a combination of the 'magnetic tower' and 'bead-on-a-wire' mechanisms, with the former accounting for most of the jet acceleration---even for strong fields---and continuing well beyond the fast magnetosonic point. At no time does the leading bow shock leave the domain and, as such, these simulations generate large-scale jets that reproduce many of the observed properties of protostellar jets including their characteristic speeds and transported fluxes.Comment: 26 pages, 16 figures. Accepted for publication in MNRA

    Turbulence in the interstellar medium

    Get PDF
    Turbulence is ubiquitous in the insterstellar medium and plays a major role in several processes such as the formation of dense structures and stars, the stability of molecular clouds, the amplification of magnetic fields, and the re-acceleration and diffusion of cosmic rays. Despite its importance, interstellar turbulence, like turbulence in general, is far from being fully understood. In this review we present the basics of turbulence physics, focusing on the statistics of its structure and energy cascade. We explore the physics of compressible and incompressible turbulent flows, as well as magnetised cases. The most relevant observational techniques that provide quantitative insights into interstellar turbulence are also presented. We also discuss the main difficulties in developing a three-dimensional view of interstellar turbulence from these observations. Finally, we briefly present what the main sources of turbulence in the interstellar medium could be
    corecore