265 research outputs found

    On the validity of memristor modeling in the neural network literature

    Full text link
    An analysis of the literature shows that there are two types of non-memristive models that have been widely used in the modeling of so-called "memristive" neural networks. Here, we demonstrate that such models have nothing in common with the concept of memristive elements: they describe either non-linear resistors or certain bi-state systems, which all are devices without memory. Therefore, the results presented in a significant number of publications are at least questionable, if not completely irrelevant to the actual field of memristive neural networks

    Memristor models for machine learning

    Get PDF
    In the quest for alternatives to traditional CMOS, it is being suggested that digital computing efficiency and power can be improved by matching the precision to the application. Many applications do not need the high precision that is being used today. In particular, large gains in area- and power efficiency could be achieved by dedicated analog realizations of approximate computing engines. In this work, we explore the use of memristor networks for analog approximate computation, based on a machine learning framework called reservoir computing. Most experimental investigations on the dynamics of memristors focus on their nonvolatile behavior. Hence, the volatility that is present in the developed technologies is usually unwanted and it is not included in simulation models. In contrast, in reservoir computing, volatility is not only desirable but necessary. Therefore, in this work, we propose two different ways to incorporate it into memristor simulation models. The first is an extension of Strukov's model and the second is an equivalent Wiener model approximation. We analyze and compare the dynamical properties of these models and discuss their implications for the memory and the nonlinear processing capacity of memristor networks. Our results indicate that device variability, increasingly causing problems in traditional computer design, is an asset in the context of reservoir computing. We conclude that, although both models could lead to useful memristor based reservoir computing systems, their computational performance will differ. Therefore, experimental modeling research is required for the development of accurate volatile memristor models.Comment: 4 figures, no tables. Submitted to neural computatio

    Memristive cellular automata for modeling of epileptic brain activity

    Get PDF
    © 2018 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/republishing this material for advertising or promotional purposes,creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works.Cellular Automata (CA) is a nature-inspired and widespread computational model which is based on the collective and emergent parallel computing capability of units (cells) locally interconnected in an abstract brain-like structure. Each such unit, referred as CA cell, performs simplistic computations/processes. However, a network of such identical cells can exhibit nonlinear behavior and be used to model highly complex physical phenomena and processes and to solve problems that are highly complicated for conventional computers. Brain activity has always been considered one of the most complex physical processes and its modeling is of utter importance. This work combines the CA parallel computing capability with the nonlinear dynamics of the memristor, aiming to model brain activity during the epileptic seizures caused by the spreading of pathological dynamics from focal to healthy brain regions. A CA-based confrontation extended to include long-range interactions, combined with the recent notion of memristive electronics, is thus proposed as a modern and promising parallel approach to modeling of such complex physical phenomena. Simulation results show the efficiency of the proposed design and the appropriate reproduction of the spreading of an epileptic seizure.Peer ReviewedPostprint (author's final draft
    • …
    corecore