11 research outputs found

    Certificateless Algorithm for Body Sensor Network and Remote Medical Server Units Authentication over Public Wireless Channels

    Get PDF
    Wireless sensor networks process and exchange mission-critical data relating to patients’ health status. Obviously, any leakages of the sensed data can have serious consequences which can endanger the lives of patients. As such, there is need for strong security and privacy protection of the data in storage as well as the data in transit. Over the recent past, researchers have developed numerous security protocols based on digital signatures, advanced encryption standard, digital certificates and elliptic curve cryptography among other approaches. However, previous studies have shown the existence of many security and privacy gaps that can be exploited by attackers to cause some harm in these networks. In addition, some techniques such as digital certificates have high storage and computation complexities occasioned by certificate and public key management issues. In this paper, a certificateless algorithm is developed for authenticating the body sensors and remote medical server units. Security analysis has shown that it offers data privacy, secure session key agreement, untraceability and anonymity. It can also withstand typical wireless sensor networks attacks such as impersonation, packet replay and man-in-the-middle. On the other hand, it is demonstrated to have the least execution time and bandwidth requirements

    Empirical Analysis of Privacy Preservation Models for Cyber Physical Deployments from a Pragmatic Perspective

    Get PDF
    The difficulty of privacy protection in cyber-physical installations encompasses several sectors and calls for methods like encryption, hashing, secure routing, obfuscation, and data exchange, among others. To create a privacy preservation model for cyber physical deployments, it is advised that data privacy, location privacy, temporal privacy, node privacy, route privacy, and other types of privacy be taken into account. Consideration must also be given to other types of privacy, such as temporal privacy. The computationally challenging process of incorporating these models into any wireless network also affects quality of service (QoS) variables including end-to-end latency, throughput, energy use, and packet delivery ratio. The best privacy models must be used by network designers and should have the least negative influence on these quality-of-service characteristics. The designers used common privacy models for the goal of protecting cyber-physical infrastructure in order to achieve this. The limitations of these installations' interconnection and interface-ability are not taken into account in this. As a result, even while network security has increased, the network's overall quality of service has dropped. The many state-of-the-art methods for preserving privacy in cyber-physical deployments without compromising their performance in terms of quality of service are examined and analyzed in this research. Lowering the likelihood that such circumstances might arise is the aim of this investigation and review. These models are rated according to how much privacy they provide, how long it takes from start to finish to transfer data, how much energy they use, and how fast their networks are. In order to maximize privacy while maintaining a high degree of service performance, the comparison will assist network designers and researchers in selecting the optimal models for their particular deployments. Additionally, the author of this book offers a variety of tactics that, when used together, might improve each reader's performance. This study also provides a range of tried-and-true machine learning approaches that networks may take into account and examine in order to enhance their privacy performance

    Identity, location and query privacy for smart devices

    Full text link
    In this thesis, we have discussed three important aspects of users\u27 privacy namely, location privacy, identity privacy and query privacy. The information related to identity, location and query is very sensitive as it can reveal behavior patterns, interests, preferences and habits of the users. We have proposed several techniques in the thesis on how to better protect the identity, location and query privacy

    Security protocols for mobile ubiquitous e-health systems

    Get PDF
    Mención Internacional en el título de doctorWearable and implantable medical devices constitute an already established industry nowadays. According to a recent research [113], North America is currently the most important market followed by Europe, Asia-Pacific and the rest of the world. Additionally, the same document remarks the importance of the Asia-Pacific region due to the rising ageing population and the overpopulation in that area. The most common implantable medical devices include pacemakers, defibrillators, cochlear implants, insulin pumps, and neurostimulators among others. In recent years, the proliferation of smartphones and other mobile “smart” devices with substantial computational and communication capabilities have reshaped the way wireless body area network may be implemented. In their current generation (or in a near future), all of them share a common feature: wireless communication capabilities [127]. Moreover, implantable medical devices have the ability to support and store telemetry data facilitating the remote monitoring of the patient. Medical devices can be part of a wireless body area network, operating both as sensors and as actuators and making decisions in real time. On the other hand, a new kind of devices called wearables such as smart bracelets or smart watches have been equipped with several sensors like Photoplethysmogram (PPG) to record the heart beats, accelerometers to count the steps or Global Positioning System (GPS) to geopositioning users and were originally conceived as cheap solutions to help people to improve their workout. However these devices have demonstrated to be quite useful in many healthcare environments due to a huge variety of different and low-cost medical sensors. Thus, patients can be monitored for long periods of time without interfering in their daily life and taking their vital signs constantly under control. Security and privacy issues have been described as two of the most challenging problems of implantable medical devices and, more generally, wireless body area networks [6, 47, 84, 103]. As an example, it has been demonstrated that somebody equipped with a low cost device can eavesdrop on the data exchanged between a reader and a peacemaker and may even induce a cardiac arrest [71]. Health-related data have been the focus of several attacks almost since the adoption of computers in the healthcare domain. As a recent example, in 2010 personal data from more than 26 million of veterans were stolen from the Department of Veterans Affairs’ database in the US by an employee who had access to the database [104]. The Ponemon Institute pointed out that Germany and the US spent in 2013 more than 7.56and7.56 and 11 millions, respectively, to protect personal health records from attacks. This PhD dissertation explores the security and privacy of data in healthcare environments where confidential information is measured in real time by some sensors placed in, on, or around the human body. Security and privacy in medical conditions have been widely studied by the research community, nonetheless with the recent boom of wearable devices, new security issues have arisen. The first part of this dissertation is dedicated to the introduction and to expose both the main motivation and objectives of this PhD Thesis. Additionally the contributions and the organization of this document are also presented. In the second part a recent proposal has been analysed from the security and privacy points of view. From this study, vulnerabilities concerning to full disclosure, impersonation, traceability, de-synchronization, and Denial-of-Service (DoS) attacks have been found. These attacks make the protocol infeasible to be introduced with an adequate security and sufficient privacy protection level. Finally, a new protocol named Fingerprint⁺ protocol for Internet of Thing (IoT) is presented, which is based on ISO/IEC 9798-2 and ISO/IEC 18000-6C and whose security is formally verified using BAN logic. In the third part of this dissertation, a new system based on International Standard Organization (ISO) standards and security National Institute of Standards and Technology (NIST) recommendations have been proposed. First, we present a mutual entity authentication protocol inspired on ISO/IEC 9798 Part 2. This system could be deployed in a hospital where Radio Frequency IDentification (RFID) technology may be used to prune blood-handling errors, i.e., the identities of the patients and blood bags are confirmed (authentication protocol) and after that the matching between both entities is checked (verification step). Second, a secure messaging protocol inspired on ISO/IEC 11770 Part 2 and similar to that used in electronic passports is presented. Nowadays the new generation of medical implants possess wireless connectivity. Imagine a doctor equipped with a reader aims to access the records of vital signals stored on the memory of an implant. In this scenario, the doctor (reader) and the patient (implant) are first mutually authenticated and then a secure exchange of data can be performed. The fourth part of this Thesis provides an architecture based on two cryptographic protocols, the first one is for publishing personal data in a body area network composed of different sensors whereas the second one is designed for sending commands to those sensors by guaranteeing the confidentiality and fine-grained access control to the private data. Both protocols are based on a recently proposed public cryptography paradigm named ciphertext policy attribute-based encryption scheme which is lightweight enough to be embedded into wearable devices and sensors. Contrarily to other proposals made on this field, this architecture allows sensors not only to encrypt data but also to decrypt messages generated by other devices. The fifth part presents a new decentralized attribute based encryption scheme named Decentralized Ciphertext-Policy Attribute Based Searchable Encryption that incorporates ciphertext-policy attribute-based encryption with keyword search over encrypted data. This scheme allows users to (a) encrypt their personal data collected by a Wireless Body Area Network (WBAN) according to a policy of attributes; (b) define a set of keywords to enable other users (e.g., hospital stuff) to perform encrypted search over their personal (encrypted) data; (c) securely store the encrypted data on a semi-honest server and let the semi-honest server run the (encrypted) keyword search. Note that any user can perform a keyword query on the encrypted data, however the decryption of the resulting ciphertexts is possible only for users whose attribute satisfy the policy with which the data had been encrypted. We state and prove the security of our scheme against an honest-but-curious server and a passive adversary. Finally, we implement our system on heterogeneous devices and demonstrate its efficiency and scalability. Finally, this document ends with a conclusions achieved during this PhD and a summary of the main published contributions.Los dispositivos médicos implantables como los marcapasos o las bombas de insulina fueron concebidas originalmente para controlar automáticamente ciertos parámetros biológicos y, llegado el caso, poder actuar ante comportamientos anómalos como ataques cardíacos o episodios de hipoglucemia. Recientemente, han surgido uno dispositivos llamados wearables como las pulseras cuantificadoras, los relojes inteligentes o las bandas pectorales. Estos dispositivos han sido equipados con un número de sensores con capacidad de monitorizar señales vitales como el ritmo cardíaco, los movimientos (acelerómetros) o sistemas de posicionamiento (GPS) entre otros muchas opciones, siendo además una solución asequible y accesible para todo el mundo. A pesar de que el propósito original fue la mejora del rendimiento en actividades deportivas, estos dispositivos han resultado ser de gran utilidad en entornos médicos debido a su amplia variedad de sensores. Esta tecnología puede ayudar al personal médico a realizar seguimientos personalizados, constantes y en tiempo real del comportamiento de los pacientes, sin necesidad de interferir en sus vidas cotidianas. Esta Tesis doctoral está centrada en la seguridad y privacidad en entornos médicos, donde la información es recogida en tiempo real a través de una serie de sensores que pueden estar implantados o equipados en el propio paciente. La seguridad y la privacidad en entornos médicos ha sido el foco de muchos investigadores, no obstante con el reciente auge de los wearables se han generado nuevos retos debido a que son dispositivos con fuertes restricciones de cómputo, de memoria, de tamaño o de autonomía. En la primera parte de este documento, se introduce el problema de la seguridad y la privacidad en el paradigma de Internet de las cosas y haciendo especial hincapié en los entornos médicos. La motivación así como los principales objetivos y contribuciones también forman parte de este primer capítulo introductorio. La segunda parte de esta Tesis presenta un nuevo protocolo de autenticación basado en RFID para IoT. Este capítulo analiza previamente, desde el punto de vista de la seguridad y la privacidad un protocolo publicado recientemente y, tras demostrar que carece de las medidas de seguridad suficientes, un nuevo protocolo llamado Fingerprint⁺ compatible con los estándares de seguridad definidos en el estándar ISO/IEC 9798-2 y EPC-C1G2 (equivalente al estándard ISO/IEC 18000-6C) ha sido propuesto. Un nuevo sistema basado en estándares ISO y en recomendaciones realizadas por el NIST ha sido propuesto en la tercera parte de esta Tesis. En este capítulo se presentan dos protocolos bien diferenciados, el primero de ellos consiste en un protocolo de autenticación basado en el estándar ISO/IEC 9798 Part 2. A modo de ejemplo, este protocolo puede evitar problemas de compatibilidad sanguínea, es decir, primero se confirma que el paciente es quien dice ser y que la bolsa de sangre realmente contiene sangre (proceso de autenticación). Posteriormente se comprueba que esa bolsa de sangre va a ser compatible con el paciente (proceso de verificación). El segundo de los protocolos propuestos consiste en un protocolo seguro para el intercambio de información basado en el estándar ISO/IEC 11770 Part 2 (el mismo que los pasaportes electrónicos). Siguiendo con el ejemplo médico, imaginemos que un doctor equipado con un lector de radiofrecuencia desea acceder a los datos que un dispositivo implantado en el paciente está recopilando. En este escenario tanto el lector como el implante, se deben autenticar mutuamente para poder realizar el intercambio de información de manera segura. En el cuarto capítulo, una nueva arquitectura basada en el modelo de Publish/Subscribe ha sido propuesto. Esta solución está compuesta de dos protocolos, uno para el intercambio de información en una red de área personal y otro para poder reconfigurar el comportamiento de los sensores. Ambos protocolos están diseñados para garantizar tanto la seguridad como la privacidad de todos los datos que se envían en la red. Para ello, el sistema está basado en un sistema de criptografía de clave pública llamado Attribute Based Encryption que es suficientemente ligero y versátil como para ser implementado en dispositivos con altas restricciones de cómputo y de memoria. A continuación, en el quinto capítulo se propone una solución completamente orientada a entornos médicos donde la información que los sensores obtienen de los pacientes es cifrada y almacenada en servidores públicos. Una vez en estos servidores, cualquier usuario con privilegios suficientes puede realizar búsquedas sobre datos cifrados, obtener la información y descifrarla. De manera adicional, antes de que los datos cifrados se manden a la nube, el paciente puede definir una serie de palabras claves que se enlazarán a los datos para permitir posteriormente búsquedas y así obtener la información relacionada a un tema en concreto de manera fácil y eficiente. El último capítulo de esta Tesis se muestran las principales conclusiones obtenidas así como un resumen de las contribuciones científicas publicadas durante el período doctoral.Programa Oficial de Doctorado en Ciencia y Tecnología InformáticaPresidente: Arturo Ribagorda Garnacho.- Secretario: Jorge Blasco Alís.- Vocal: Jesús Garicia López de Lacall

    Cybersecurity and the Digital Health: An Investigation on the State of the Art and the Position of the Actors

    Get PDF
    Cybercrime is increasingly exposing the health domain to growing risk. The push towards a strong connection of citizens to health services, through digitalization, has undisputed advantages. Digital health allows remote care, the use of medical devices with a high mechatronic and IT content with strong automation, and a large interconnection of hospital networks with an increasingly effective exchange of data. However, all this requires a great cybersecurity commitment—a commitment that must start with scholars in research and then reach the stakeholders. New devices and technological solutions are increasingly breaking into healthcare, and are able to change the processes of interaction in the health domain. This requires cybersecurity to become a vital part of patient safety through changes in human behaviour, technology, and processes, as part of a complete solution. All professionals involved in cybersecurity in the health domain were invited to contribute with their experiences. This book contains contributions from various experts and different fields. Aspects of cybersecurity in healthcare relating to technological advance and emerging risks were addressed. The new boundaries of this field and the impact of COVID-19 on some sectors, such as mhealth, have also been addressed. We dedicate the book to all those with different roles involved in cybersecurity in the health domain

    Security and Privacy for Modern Wireless Communication Systems

    Get PDF
    The aim of this reprint focuses on the latest protocol research, software/hardware development and implementation, and system architecture design in addressing emerging security and privacy issues for modern wireless communication networks. Relevant topics include, but are not limited to, the following: deep-learning-based security and privacy design; covert communications; information-theoretical foundations for advanced security and privacy techniques; lightweight cryptography for power constrained networks; physical layer key generation; prototypes and testbeds for security and privacy solutions; encryption and decryption algorithm for low-latency constrained networks; security protocols for modern wireless communication networks; network intrusion detection; physical layer design with security consideration; anonymity in data transmission; vulnerabilities in security and privacy in modern wireless communication networks; challenges of security and privacy in node–edge–cloud computation; security and privacy design for low-power wide-area IoT networks; security and privacy design for vehicle networks; security and privacy design for underwater communications networks

    A Survey on Security and Privacy of 5G Technologies: Potential Solutions, Recent Advancements, and Future Directions

    Get PDF
    Security has become the primary concern in many telecommunications industries today as risks can have high consequences. Especially, as the core and enable technologies will be associated with 5G network, the confidential information will move at all layers in future wireless systems. Several incidents revealed that the hazard encountered by an infected wireless network, not only affects the security and privacy concerns, but also impedes the complex dynamics of the communications ecosystem. Consequently, the complexity and strength of security attacks have increased in the recent past making the detection or prevention of sabotage a global challenge. From the security and privacy perspectives, this paper presents a comprehensive detail on the core and enabling technologies, which are used to build the 5G security model; network softwarization security, PHY (Physical) layer security and 5G privacy concerns, among others. Additionally, the paper includes discussion on security monitoring and management of 5G networks. This paper also evaluates the related security measures and standards of core 5G technologies by resorting to different standardization bodies and provide a brief overview of 5G standardization security forces. Furthermore, the key projects of international significance, in line with the security concerns of 5G and beyond are also presented. Finally, a future directions and open challenges section has included to encourage future research.European CommissionNational Research Tomsk Polytechnic UniversityUpdate citation details during checkdate report - A

    High-Performance Modelling and Simulation for Big Data Applications

    Get PDF
    This open access book was prepared as a Final Publication of the COST Action IC1406 “High-Performance Modelling and Simulation for Big Data Applications (cHiPSet)“ project. Long considered important pillars of the scientific method, Modelling and Simulation have evolved from traditional discrete numerical methods to complex data-intensive continuous analytical optimisations. Resolution, scale, and accuracy have become essential to predict and analyse natural and complex systems in science and engineering. When their level of abstraction raises to have a better discernment of the domain at hand, their representation gets increasingly demanding for computational and data resources. On the other hand, High Performance Computing typically entails the effective use of parallel and distributed processing units coupled with efficient storage, communication and visualisation systems to underpin complex data-intensive applications in distinct scientific and technical domains. It is then arguably required to have a seamless interaction of High Performance Computing with Modelling and Simulation in order to store, compute, analyse, and visualise large data sets in science and engineering. Funded by the European Commission, cHiPSet has provided a dynamic trans-European forum for their members and distinguished guests to openly discuss novel perspectives and topics of interests for these two communities. This cHiPSet compendium presents a set of selected case studies related to healthcare, biological data, computational advertising, multimedia, finance, bioinformatics, and telecommunications

    High-Performance Modelling and Simulation for Big Data Applications

    Get PDF
    This open access book was prepared as a Final Publication of the COST Action IC1406 “High-Performance Modelling and Simulation for Big Data Applications (cHiPSet)“ project. Long considered important pillars of the scientific method, Modelling and Simulation have evolved from traditional discrete numerical methods to complex data-intensive continuous analytical optimisations. Resolution, scale, and accuracy have become essential to predict and analyse natural and complex systems in science and engineering. When their level of abstraction raises to have a better discernment of the domain at hand, their representation gets increasingly demanding for computational and data resources. On the other hand, High Performance Computing typically entails the effective use of parallel and distributed processing units coupled with efficient storage, communication and visualisation systems to underpin complex data-intensive applications in distinct scientific and technical domains. It is then arguably required to have a seamless interaction of High Performance Computing with Modelling and Simulation in order to store, compute, analyse, and visualise large data sets in science and engineering. Funded by the European Commission, cHiPSet has provided a dynamic trans-European forum for their members and distinguished guests to openly discuss novel perspectives and topics of interests for these two communities. This cHiPSet compendium presents a set of selected case studies related to healthcare, biological data, computational advertising, multimedia, finance, bioinformatics, and telecommunications

    IoT and Sensor Networks in Industry and Society

    Get PDF
    The exponential progress of Information and Communication Technology (ICT) is one of the main elements that fueled the acceleration of the globalization pace. Internet of Things (IoT), Artificial Intelligence (AI) and big data analytics are some of the key players of the digital transformation that is affecting every aspect of human's daily life, from environmental monitoring to healthcare systems, from production processes to social interactions. In less than 20 years, people's everyday life has been revolutionized, and concepts such as Smart Home, Smart Grid and Smart City have become familiar also to non-technical users. The integration of embedded systems, ubiquitous Internet access, and Machine-to-Machine (M2M) communications have paved the way for paradigms such as IoT and Cyber Physical Systems (CPS) to be also introduced in high-requirement environments such as those related to industrial processes, under the forms of Industrial Internet of Things (IIoT or I2oT) and Cyber-Physical Production Systems (CPPS). As a consequence, in 2011 the German High-Tech Strategy 2020 Action Plan for Germany first envisioned the concept of Industry 4.0, which is rapidly reshaping traditional industrial processes. The term refers to the promise to be the fourth industrial revolution. Indeed, the first industrial revolution was triggered by water and steam power. Electricity and assembly lines enabled mass production in the second industrial revolution. In the third industrial revolution, the introduction of control automation and Programmable Logic Controllers (PLCs) gave a boost to factory production. As opposed to the previous revolutions, Industry 4.0 takes advantage of Internet access, M2M communications, and deep learning not only to improve production efficiency but also to enable the so-called mass customization, i.e. the mass production of personalized products by means of modularized product design and flexible processes. Less than five years later, in January 2016, the Japanese 5th Science and Technology Basic Plan took a further step by introducing the concept of Super Smart Society or Society 5.0. According to this vision, in the upcoming future, scientific and technological innovation will guide our society into the next social revolution after the hunter-gatherer, agrarian, industrial, and information eras, which respectively represented the previous social revolutions. Society 5.0 is a human-centered society that fosters the simultaneous achievement of economic, environmental and social objectives, to ensure a high quality of life to all citizens. This information-enabled revolution aims to tackle today’s major challenges such as an ageing population, social inequalities, depopulation and constraints related to energy and the environment. Accordingly, the citizens will be experiencing impressive transformations into every aspect of their daily lives. This book offers an insight into the key technologies that are going to shape the future of industry and society. It is subdivided into five parts: the I Part presents a horizontal view of the main enabling technologies, whereas the II-V Parts offer a vertical perspective on four different environments. The I Part, dedicated to IoT and Sensor Network architectures, encompasses three Chapters. In Chapter 1, Peruzzi and Pozzebon analyse the literature on the subject of energy harvesting solutions for IoT monitoring systems and architectures based on Low-Power Wireless Area Networks (LPWAN). The Chapter does not limit the discussion to Long Range Wise Area Network (LoRaWAN), SigFox and Narrowband-IoT (NB-IoT) communication protocols, but it also includes other relevant solutions such as DASH7 and Long Term Evolution MAchine Type Communication (LTE-M). In Chapter 2, Hussein et al. discuss the development of an Internet of Things message protocol that supports multi-topic messaging. The Chapter further presents the implementation of a platform, which integrates the proposed communication protocol, based on Real Time Operating System. In Chapter 3, Li et al. investigate the heterogeneous task scheduling problem for data-intensive scenarios, to reduce the global task execution time, and consequently reducing data centers' energy consumption. The proposed approach aims to maximize the efficiency by comparing the cost between remote task execution and data migration. The II Part is dedicated to Industry 4.0, and includes two Chapters. In Chapter 4, Grecuccio et al. propose a solution to integrate IoT devices by leveraging a blockchain-enabled gateway based on Ethereum, so that they do not need to rely on centralized intermediaries and third-party services. As it is better explained in the paper, where the performance is evaluated in a food-chain traceability application, this solution is particularly beneficial in Industry 4.0 domains. Chapter 5, by De Fazio et al., addresses the issue of safety in workplaces by presenting a smart garment that integrates several low-power sensors to monitor environmental and biophysical parameters. This enables the detection of dangerous situations, so as to prevent or at least reduce the consequences of workers accidents. The III Part is made of two Chapters based on the topic of Smart Buildings. In Chapter 6, Petroșanu et al. review the literature about recent developments in the smart building sector, related to the use of supervised and unsupervised machine learning models of sensory data. The Chapter poses particular attention on enhanced sensing, energy efficiency, and optimal building management. In Chapter 7, Oh examines how much the education of prosumers about their energy consumption habits affects power consumption reduction and encourages energy conservation, sustainable living, and behavioral change, in residential environments. In this Chapter, energy consumption monitoring is made possible thanks to the use of smart plugs. Smart Transport is the subject of the IV Part, including three Chapters. In Chapter 8, Roveri et al. propose an approach that leverages the small world theory to control swarms of vehicles connected through Vehicle-to-Vehicle (V2V) communication protocols. Indeed, considering a queue dominated by short-range car-following dynamics, the Chapter demonstrates that safety and security are increased by the introduction of a few selected random long-range communications. In Chapter 9, Nitti et al. present a real time system to observe and analyze public transport passengers' mobility by tracking them throughout their journey on public transport vehicles. The system is based on the detection of the active Wi-Fi interfaces, through the analysis of Wi-Fi probe requests. In Chapter 10, Miler et al. discuss the development of a tool for the analysis and comparison of efficiency indicated by the integrated IT systems in the operational activities undertaken by Road Transport Enterprises (RTEs). The authors of this Chapter further provide a holistic evaluation of efficiency of telematics systems in RTE operational management. The book ends with the two Chapters of the V Part on Smart Environmental Monitoring. In Chapter 11, He et al. propose a Sea Surface Temperature Prediction (SSTP) model based on time-series similarity measure, multiple pattern learning and parameter optimization. In this strategy, the optimal parameters are determined by means of an improved Particle Swarm Optimization method. In Chapter 12, Tsipis et al. present a low-cost, WSN-based IoT system that seamlessly embeds a three-layered cloud/fog computing architecture, suitable for facilitating smart agricultural applications, especially those related to wildfire monitoring. We wish to thank all the authors that contributed to this book for their efforts. We express our gratitude to all reviewers for the volunteering support and precious feedback during the review process. We hope that this book provides valuable information and spurs meaningful discussion among researchers, engineers, businesspeople, and other experts about the role of new technologies into industry and society
    corecore