680 research outputs found

    A hybrid GA–PS–SQP method to solve power system valve-point economic dispatch problems

    No full text
    This study presents a new approach based on a hybrid algorithm consisting of Genetic Algorithm (GA), Pattern Search (PS) and Sequential Quadratic Programming (SQP) techniques to solve the well-known power system Economic dispatch problem (ED). GA is the main optimizer of the algorithm, whereas PS and SQP are used to fine tune the results of GA to increase confidence in the solution. For illustrative purposes, the algorithm has been applied to various test systems to assess its effectiveness. Furthermore, convergence characteristics and robustness of the proposed method have been explored through comparison with results reported in literature. The outcome is very encouraging and suggests that the hybrid GA–PS–SQP algorithm is very efficient in solving power system economic dispatch problem

    Economic Dispatch Thermal Generator Using Modified Improved Particle Swarm Optimization

    Get PDF
    Fuel cost of a thermal generator is its own load functions. In this research, Modified Improved Particle Swarm Optimization (MIPSO) is applied to calculate economic dispatch. Constriction Factor Approach (CFA) is used to modify IPSO algorithm because of the advantage to improve the ability of global searching and to avoid local minimum, so that the time needed to converge become faster. Simulation results achieved by using  MIPSO method at the time of peak load of of 9602 MW, obtained generation cost is Rp 7,366,912,798,34 per hour, while generation cost of real system is Rp. 7,724,012,070.30 per hour. From the simulation result can be concluded that MIPSO can reduce the generation cost of  500 kV Jawa Bali transmission system of Rp 357,099,271.96 per hour or equal to 4,64%

    Chaos-Enhanced Cuckoo Search for Economic Dispatch with Valve Point Effects

    Get PDF
    Economic dispatch determines the optimal generation outputs to minimize the toal fuel cost while satisfying the load demand and operational constraints. Modern optimization techniques fail to solve the problem in a robust manner and finding robust global optimization techniques is necessary for efficient system operation. In this study, the potentiality of introducing chaos into the standard Cuckoo Search (CS) in order to further enhance its global search ability is investigated. Deterministic chaotic maps are random-based techniques that can provide a balanced exploration and exploitation searches for the algorithm. Four different variants are generated by carefully choosing four different locations (within the standard CS) with potential adoption of a candidate chaotic map.Then detailed studies are carried out on benchmark power system problems with four different locations to find out the most efficient one. The best of all test cases generated is chosen and compared with algorithms presented in the literature. The results show that the proposed method with the proposed chaotic map outperforms standard CS. Additionally, the chaos-enhanced CS has a very good performance in comparison with QPSO and NSS
    • …
    corecore