1,766 research outputs found

    Persistent Homology of Attractors For Action Recognition

    Full text link
    In this paper, we propose a novel framework for dynamical analysis of human actions from 3D motion capture data using topological data analysis. We model human actions using the topological features of the attractor of the dynamical system. We reconstruct the phase-space of time series corresponding to actions using time-delay embedding, and compute the persistent homology of the phase-space reconstruction. In order to better represent the topological properties of the phase-space, we incorporate the temporal adjacency information when computing the homology groups. The persistence of these homology groups encoded using persistence diagrams are used as features for the actions. Our experiments with action recognition using these features demonstrate that the proposed approach outperforms other baseline methods.Comment: 5 pages, Under review in International Conference on Image Processin

    Toward an ecological conception of timbre

    Get PDF
    This paper is part of a series in which we had worked in the last 6 months, and, specifically, intend to investigate the notion of timbre through the ecological perspective proposed by James Gibson in his Theory of Direct Perception. First of all, we discussed the traditional approach to timbre, mainly as developed in acoustics and psychoacoustics. Later, we proposed a new conception of timbre that was born in concepts of ecological approach. The ecological approach to perception proposed by Gibson (1966, 1979) presupposes a level of analysis of perceptual stimulated that includes, but is quite broader than the usual physical aspect. Gibson suggests as focus the relationship between the perceiver and his environment. At the core of this approach, is the notion of affordances, invariant combinations of properties at the ecological level, taken with reference to the anatomy and action systems of species or individual, and also with reference to its biological and social needs. Objects and events are understood as relates to a perceiving organism by the meaning of structured information, thus affording possibilities of action by the organism. Event perception aims at identifying properties of events to specify changes of the environment that are relevant to the organism. The perception of form is understood as a special instance of event perception, which is the identity of an object depends on the nature of the events in which is involved and what remains invariant over time. From this perspective, perception is not in any sense created by the brain, but is a part of the world where information can be found. Consequently, an ecological approach represents a form of direct realism that opposes the indirect realist based on predominant approaches to perception borrowed from psychoacoustics and computational approach

    Dynamic texture recognition using time-causal and time-recursive spatio-temporal receptive fields

    Full text link
    This work presents a first evaluation of using spatio-temporal receptive fields from a recently proposed time-causal spatio-temporal scale-space framework as primitives for video analysis. We propose a new family of video descriptors based on regional statistics of spatio-temporal receptive field responses and evaluate this approach on the problem of dynamic texture recognition. Our approach generalises a previously used method, based on joint histograms of receptive field responses, from the spatial to the spatio-temporal domain and from object recognition to dynamic texture recognition. The time-recursive formulation enables computationally efficient time-causal recognition. The experimental evaluation demonstrates competitive performance compared to state-of-the-art. Especially, it is shown that binary versions of our dynamic texture descriptors achieve improved performance compared to a large range of similar methods using different primitives either handcrafted or learned from data. Further, our qualitative and quantitative investigation into parameter choices and the use of different sets of receptive fields highlights the robustness and flexibility of our approach. Together, these results support the descriptive power of this family of time-causal spatio-temporal receptive fields, validate our approach for dynamic texture recognition and point towards the possibility of designing a range of video analysis methods based on these new time-causal spatio-temporal primitives.Comment: 29 pages, 16 figure

    Crowd Recognition System Based on Optical Flow Along with SVM classifier

    Get PDF
    The manuscript discusses about abnormalities in a crowded scenario. To prevent the mishap at a public place, there is no much mechanism which could prevent or alert the concerned authority about suspects in a crowd. Usually in a crowded scene, there are chances of some mishap like a terrorist attack or a crime. Our target is finding techniques to identify such activities and to possibly prevent them. If the crowd members exhibit abnormal behavior, we could identify and say that this particular person is a suspect and then the concerned authority would look into the matter. There are various methods to identify the abnormal behavior. The proposed approach is based on optical flow model. It has an ability to detect the sudden changes in motion of an individual among the crowd. First, the main region of motion is extracted by the help of motion heat map. Harris corner detector is used for extracting point of interest of extracted motion area. Based on the point of interest an optical flow is estimated here. After analyzing this optical flow model, a threshold value is fixed. Basically optical flow is an energy level of individual frame. The threshold value is forwarded to SVM classifier, which produces a better result with 99.71% accuracy. This approach is very useful in real time video surveillance system where a machine can monitor unwanted crowd activity.

    The quark-gluon plasma, turbulence, and quantum mechanics

    Full text link
    Quark-gluon plasmas formed in heavy ion collisions at high energies are well described by ideal classical fluid equations with nearly zero viscosity. It is believed that a similar fluid permeated the entire universe at about three microseconds after the big bang. The estimated Reynolds number for this quark-gluon plasma at 3 microseconds is approximately 10^19. The possibility that quantum mechanics may be an emergent property of a turbulent proto-fluid is tentatively explored. A simple relativistic fluid equation which is consistent with general relativity and is based on a cosmic dust model is studied. A proper time transformation transforms it into an inviscid Burgers equation. This is analyzed numerically using a spectral method. Soliton-like solutions are demonstrated for this system, and these interact with the known ergodic behavior of the fluid to yield a stochastic and chaotic system which is time reversible. Various similarities to quantum mechanics are explored.Comment: 41 pages. Content changes in the azimuthal soliton sectio
    • …
    corecore