420 research outputs found

    Chaotic dynamics in a quantum Fermi-Pasta-Ulam problem

    Full text link
    We investigate the emergence of chaotic dynamics in a quantum Fermi - Pasta - Ulam problem for anharmonic vibrations in atomic chains applying semi-quantitative analysis of resonant interactions complemented by exact diagonalization numerical studies. The crossover energy separating chaotic high energy phase and localized (integrable) low energy phase is estimated. It decreases inversely proportionally to the number of atoms until approaching the quantum regime where this dependence saturates. The chaotic behavior appears at lower energies in systems with free or fixed ends boundary conditions compared to periodic systems. The applications of the theory to realistic molecules are discussed.Comment: Submitted to Entrop

    The Fermi-Pasta-Ulam problem: 50 years of progress

    Full text link
    A brief review of the Fermi-Pasta-Ulam (FPU) paradox is given, together with its suggested resolutions and its relation to other physical problems. We focus on the ideas and concepts that have become the core of modern nonlinear mechanics, in their historical perspective. Starting from the first numerical results of FPU, both theoretical and numerical findings are discussed in close connection with the problems of ergodicity, integrability, chaos and stability of motion. New directions related to the Bose-Einstein condensation and quantum systems of interacting Bose-particles are also considered.Comment: 48 pages, no figures, corrected and accepted for publicatio

    Thermostatistics in the neighborhood of the π\pi-mode solution for the Fermi-Pasta-Ulam β\beta system: from weak to strong chaos

    Get PDF
    We consider a π\pi-mode solution of the Fermi-Pasta-Ulam β\beta system. By perturbing it, we study the system as a function of the energy density from a regime where the solution is stable to a regime, where is unstable, first weakly and then strongly chaotic. We introduce, as indicator of stochasticity, the ratio ρ\rho (when is defined) between the second and the first moment of a given probability distribution. We will show numerically that the transition between weak and strong chaos can be interpreted as the symmetry breaking of a set of suitable dynamical variables. Moreover, we show that in the region of weak chaos there is numerical evidence that the thermostatistic is governed by the Tsallis distribution.Comment: 15 pages, 5 figure

    Dynamical thermalization of Bose-Einstein condensate in Bunimovich stadium

    Full text link
    We study numerically the wavefunction evolution of a Bose-Einstein condensate in a Bunimovich stadium billiard being governed by the Gross-Pitaevskii equation. We show that for a moderate nonlinearity, above a certain threshold, there is emergence of dynamical thermalization which leads to the Bose-Einstein probability distribution over the linear eigenmodes of the stadium. This distribution is drastically different from the energy equipartition over oscillator degrees of freedom which would lead to the ultra-violet catastrophe. We argue that this interesting phenomenon can be studied in cold atom experiments.Comment: 6 pages, 6 figures. Accepted in Europhysics Letters. Video is available at http://www.quantware.ups-tlse.fr/QWLIB/becstadium

    Dynamics and thermalization of Bose-Einstein condensate in Sinai oscillator trap

    Get PDF
    We study numerically the evolution of Bose-Einstein condensate in the Sinai oscillator trap described by the Gross-Pitaevskii equation in two dimensions. In the absence of interactions this trap mimics the properties of Sinai billiards where the classical dynamics is chaotic and the quantum evolution is described by generic properties of quantum chaos and random matrix theory. We show that, above a certain border, the nonlinear interactions between atoms lead to the emergence of dynamical thermalization which generates the statistical Bose-Einstein distribution over eigenmodes of the system without interactions. Below the thermalization border the evolution remains quasi-integrable. Such a Sinai oscillator trap, formed by the oscillator potential and a repulsive disk located in the vicinity of the center, had been already realized in rst experiments with the Bose-Einstein condensate formation by Ketterle group in 1995 and we argue that it can form a convenient test bed for experimental investigations of dynamical of thermalization. Possible links and implications for Kolmogorov turbulence in absence of noise are also discussed.Comment: 11 pages, 14 figures. Final version. Accepted forpublication at Phys. Rev. A. Additional information available at http://www.quantware.ups-tlse.fr/QWLIB/sinaioscillator

    Many-body symbolic dynamics of a classical oscillator chain

    Full text link
    We study a certain type of the celebrated Fermi-Pasta-Ulam particle chain, namely the inverted FPU model, where the inter-particle potential has a form of a quartic double well. Numerical evidence is given in support of a simple symbolic description of dynamics (in the regime of sufficiently high potential barrier between the wells) in terms of an (approximate) Markov process. The corresponding transition matrix is formally identical to a ferromagnetic Heisenberg quantum spin-1/2 chain with long range coupling, whose diagonalization yields accurate estimates for a class of time correlation functions of the model.Comment: 22 pages in LaTeX with 14 figures; submitted to Nonlinearity ; corrected page offset proble

    Chaotic Dynamics of N-degree of Freedom Hamiltonian Systems

    Full text link
    We investigate the connection between local and global dynamics of two N-degree of freedom Hamiltonian systems with different origins describing one-dimensional nonlinear lattices: The Fermi-Pasta-Ulam (FPU) model and a discretized version of the nonlinear Schrodinger equation related to Bose-Einstein Condensation (BEC). We study solutions starting in the vicinity of simple periodic orbits (SPOs) representing in-phase (IPM) and out-of-phase motion (OPM), which are known in closed form and whose linear stability can be analyzed exactly. Our results verify that as the energy E increases for fixed N, beyond the destabilization threshold of these orbits, all positive Lyapunov exponents exhibit a transition between two power laws, occurring at the same value of E. The destabilization energy E_c per particle goes to zero as N goes to infinity following a simple power-law. However, using SALI, a very efficient indicator we have recently introduced for distinguishing order from chaos, we find that the two Hamiltonians have very different dynamics near their stable SPOs: For example, in the case of the FPU system, as the energy increases for fixed N, the islands of stability around the OPM decrease in size, the orbit destabilizes through period-doubling bifurcation and its eigenvalues move steadily away from -1, while for the BEC model the OPM has islands around it which grow in size before it bifurcates through symmetry breaking, while its real eigenvalues return to +1 at very high energies. Still, when calculating Lyapunov spectra, we find for the OPMs of both Hamiltonians that the Lyapunov exponents decrease following an exponential law and yield extensive Kolmogorov--Sinai entropies per particle, in the thermodynamic limit of fixed energy density E/N with E and N arbitrarily large.Comment: 29 pages, 10 figures, published at International Journal of Bifurcation and Chaos (IJBC

    Kolmogorov turbulence, Anderson localization and KAM integrability

    Full text link
    The conditions for emergence of Kolmogorov turbulence, and related weak wave turbulence, in finite size systems are analyzed by analytical methods and numerical simulations of simple models. The analogy between Kolmogorov energy flow from large to small spacial scales and conductivity in disordered solid state systems is proposed. It is argued that the Anderson localization can stop such an energy flow. The effects of nonlinear wave interactions on such a localization are analyzed. The results obtained for finite size system models show the existence of an effective chaos border between the Kolmogorov-Arnold-Moser (KAM) integrability at weak nonlinearity, when energy does not flow to small scales, and developed chaos regime emerging above this border with the Kolmogorov turbulent energy flow from large to small scales.Comment: 8 pages, 6 figs, EPJB style
    corecore