2,425 research outputs found

    Synchronization of non-chaotic dynamical systems

    Full text link
    A synchronization mechanism driven by annealed noise is studied for two replicas of a coupled-map lattice which exhibits stable chaos (SC), i.e. irregular behavior despite a negative Lyapunov spectrum. We show that the observed synchronization transition, on changing the strength of the stochastic coupling between replicas, belongs to the directed percolation universality class. This result is consistent with the behavior of chaotic deterministic cellular automata (DCA), supporting the equivalence Ansatz between SC models and DCA. The coupling threshold above which the two system replicas synchronize is strictly related to the propagation velocity of perturbations in the system.Comment: 16 pages + 12 figures, new and extended versio

    Synchronization universality classes and stability of smooth, coupled map lattices

    Full text link
    We study two problems related to spatially extended systems: the dynamical stability and the universality classes of the replica synchronization transition. We use a simple model of one dimensional coupled map lattices and show that chaotic behavior implies that the synchronization transition belongs to the multiplicative noise universality class, while stable chaos implies that the synchronization transition belongs to the directed percolation universality class.Comment: 6 pages, 7 figure

    Non-invertible transformations and spatiotemporal randomness

    Full text link
    We generalize the exact solution to the Bernoulli shift map. Under certain conditions, the generalized functions can produce unpredictable dynamics. We use the properties of the generalized functions to show that certain dynamical systems can generate random dynamics. For instance, the chaotic Chua's circuit coupled to a circuit with a non-invertible I-V characteristic can generate unpredictable dynamics. In general, a nonperiodic time-series with truncated exponential behavior can be converted into unpredictable dynamics using non-invertible transformations. Using a new theoretical framework for chaos and randomness, we investigate some classes of coupled map lattices. We show that, in some cases, these systems can produce completely unpredictable dynamics. In a similar fashion, we explain why some wellknown spatiotemporal systems have been found to produce very complex dynamics in numerical simulations. We discuss real physical systems that can generate random dynamics.Comment: Accepted in International Journal of Bifurcation and Chao
    corecore