6 research outputs found

    Chaos-based TOA estimator for DS-UWB ranging systems in multiuser environment

    Get PDF
    International audienceIn this paper, we present a chaos-based decoupled multiuser ranging (DEMR) estimator for multiuser DS-UWB ranging system. In the DEMR estimator, users are decoupled by the knowledge of all the users' limited number of data bits. Then, the ranging performance of each user mainly depends on the non-cyclic autocorrelation property of the spreading code. Based on this property, we improve DEMR estimator by using the selected binary chaotic sequences instead of the Gold sequences in order to increase the system capacity and to improve the ranging accuracy. Simulations in CM1 channel show that the chaos-based DEMR estimator is quite near-far resistant and achieves a noticeable ranging accuracy even in a heavily loaded system. Compared with using Gold sequences, chaos-based DEMR not only works with more users than full load of Gold sequences but also improves the ranging accuracy especially under low SNR condition

    Efficient complementary sequences-based architectures and their application to ranging measurements

    Get PDF
    Premio Extraordinario de Doctorado de la UAH en 2015En las últimas décadas, los sistemas de medición de distancias se han beneficiado de los avances en el área de las comunicaciones inalámbricas. En los sistemas basados en CDMA (Code-Division Multiple-Access), las propiedades de correlación de las secuencias empleadas juegan un papel fundamental en el desarrollo de dispositivos de medición de altas prestaciones. Debido a las sumas ideales de correlaciones aperiódicas, los conjuntos de secuencias complementarias, CSS (Complementary Sets of Sequences), son ampliamente utilizados en sistemas CDMA. En ellos, es deseable el uso de arquitecturas eficientes que permitan generar y correlar CSS del mayor número de secuencias y longitudes posibles. Por el término eficiente se hace referencia a aquellas arquitecturas que requieren menos operaciones por muestra de entrada que con una arquitectura directa. Esta tesis contribuye al desarrollo de arquitecturas eficientes de generación/correlación de CSS y derivadas, como son las secuencias LS (Loosely Synchronized) y GPC (Generalized Pairwise Complementary), que permitan aumentar el número de longitudes y/o de secuencias disponibles. Las contribuciones de la tesis pueden dividirse en dos bloques: En primer lugar, las arquitecturas eficientes de generación/correlación para CSS binarios, derivadas en trabajos previos, son generalizadas al alfabeto multinivel (secuencias con valores reales) mediante el uso de matrices de Hadamard multinivel. Este planteamiento tiene dos ventajas: por un lado el aumento del número de longitudes que pueden generarse/correlarse y la eliminación de las limitaciones de las arquitecturas previas en el número de secuencias en el conjunto. Por otro lado, bajo ciertas condiciones, los parámetros de las arquitecturas generalizadas pueden ajustarse para generar/correlar eficientemente CSS binarios de mayor número de longitudes que con las arquitecturas eficientes previas. En segundo lugar, las arquitecturas propuestas son usadas para el desarrollo de nuevos algoritmos de generación/correlación de secuencias derivadas de CSS que reducen el número de operaciones por muestra de entrada. Finalmente, se presenta la aplicación de las secuencias estudiadas en un nuevo sistema de posicionamiento local basado en Ultra-Wideband y en un sistema de posicionamiento local basado en ultrasonidos

    Chaos-based TOA estimator for DS-UWB ranging systems in multiuser environment

    No full text
    International audienceIn this paper, we present a chaos-based decoupled multiuser ranging (DEMR) estimator for multiuser DS-UWB ranging system. In the DEMR estimator, users are decoupled by the knowledge of all the users' limited number of data bits. Then, the ranging performance of each user mainly depends on the non-cyclic autocorrelation property of the spreading code. Based on this property, we improve DEMR estimator by using the selected binary chaotic sequences instead of the Gold sequences in order to increase the system capacity and to improve the ranging accuracy. Simulations in CM1 channel show that the chaos-based DEMR estimator is quite near-far resistant and achieves a noticeable ranging accuracy even in a heavily loaded system. Compared with using Gold sequences, chaos-based DEMR not only works with more users than full load of Gold sequences but also improves the ranging accuracy especially under low SNR condition

    Decentralized Ultra-Reliable Low-Latency Communications through Concurrent Cooperative Transmission

    Get PDF
    Emerging cyber-physical systems demand for communication technologies that enable seamless interactions between humans and physical objects in a shared environment. This thesis proposes decentralized URLLC (dURLLC) as a new communication paradigm that allows the nodes in a wireless multi-hop network (WMN) to disseminate data quickly, reliably and without using a centralized infrastructure. To enable the dURLLC paradigm, this thesis explores the practical feasibility of concurrent cooperative transmission (CCT) with orthogonal frequency-division multiplexing (OFDM). CCT allows for an efficient utilization of the medium by leveraging interference instead of trying to avoid collisions. CCT-based network flooding disseminates data in a WMN through a reception-triggered low-level medium access control (MAC). OFDM provides high data rates by using a large bandwidth, resulting in a short transmission duration for a given amount of data. This thesis explores CCT-based network flooding with the OFDM-based IEEE 802.11 Non-HT and HT physical layers (PHYs) to enable interactions with commercial devices. An analysis of CCT with the IEEE 802.11 Non-HT PHY investigates the combined effects of the phase offset (PO), the carrier frequency offset (CFO) and the time offset (TO) between concurrent transmitters, as well as the elapsed time. The analytical results of the decodability of a CCT are validated in simulations and in testbed experiments with Wireless Open Access Research Platform (WARP) v3 software-defined radios (SDRs). CCT with coherent interference (CI) is the primary approach of this thesis. Two prototypes for CCT with CI are presented that feature mechanisms for precise synchronization in time and frequency. One prototype is based on the WARP v3 and its IEEE 802.11 reference design, whereas the other prototype is created through firmware modifications of the Asus RT-AC86U wireless router. Both prototypes are employed in testbed experiments in which two groups of nodes generate successive CCTs in a ping-pong fashion to emulate flooding processes with a very large number of hops. The nodes stay synchronized in experiments with 10 000 successive CCTs for various modulation and coding scheme (MCS) indices and MAC service data unit (MSDU) sizes. The URLLC requirement of delivering a 32-byte MSDU with a reliability of 99.999 % and with a latency of 1 ms is assessed in experiments with 1 000 000 CCTs, while the reliability is approximated by means of the frame reception rate (FRR). An FRR of at least 99.999 % is achieved at PHY data rates of up to 48 Mbit/s under line-of-sight (LOS) conditions and at PHY data rates of up to 12 Mbit/s under non-line-of-sight (NLOS) conditions on a 20 MHz wide channel, while the latency per hop is 48.2 µs and 80.2 µs, respectively. With four multiple input multiple output (MIMO) spatial streams on a 40 MHz wide channel, a LOS receiver achieves an FRR of 99.5 % at a PHY data rate of 324 Mbit/s. For CCT with incoherent interference, this thesis proposes equalization with time-variant zero-forcing (TVZF) and presents a TVZF receiver for the IEEE 802.11 Non-HT PHY, achieving an FRR of up to 92 % for CCTs from three unsyntonized commercial devices. As CCT-based network flooding allows for an implicit time synchronization of all nodes, a reception-triggered low-level MAC and a reservation-based high-level MAC may in combination support various applications and scenarios under the dURLLC paradigm

    Listening to Distances and Hearing Shapes:Inverse Problems in Room Acoustics and Beyond

    Get PDF
    A central theme of this thesis is using echoes to achieve useful, interesting, and sometimes surprising results. One should have no doubts about the echoes' constructive potential; it is, after all, demonstrated masterfully by Nature. Just think about the bat's intriguing ability to navigate in unknown spaces and hunt for insects by listening to echoes of its calls, or about similar (albeit less well-known) abilities of toothed whales, some birds, shrews, and ultimately people. We show that, perhaps contrary to conventional wisdom, multipath propagation resulting from echoes is our friend. When we think about it the right way, it reveals essential geometric information about the sources--channel--receivers system. The key idea is to think of echoes as being more than just delayed and attenuated peaks in 1D impulse responses; they are actually additional sources with their corresponding 3D locations. This transformation allows us to forget about the abstract \emph{room}, and to replace it by more familiar \emph{point sets}. We can then engage the powerful machinery of Euclidean distance geometry. A problem that always arises is that we do not know \emph{a priori} the matching between the peaks and the points in space, and solving the inverse problem is achieved by \emph{echo sorting}---a tool we developed for learning correct labelings of echoes. This has applications beyond acoustics, whenever one deals with waves and reflections, or more generally, time-of-flight measurements. Equipped with this perspective, we first address the ``Can one hear the shape of a room?'' question, and we answer it with a qualified ``yes''. Even a single impulse response uniquely describes a convex polyhedral room, whereas a more practical algorithm to reconstruct the room's geometry uses only first-order echoes and a few microphones. Next, we show how different problems of localization benefit from echoes. The first one is multiple indoor sound source localization. Assuming the room is known, we show that discretizing the Helmholtz equation yields a system of sparse reconstruction problems linked by the common sparsity pattern. By exploiting the full bandwidth of the sources, we show that it is possible to localize multiple unknown sound sources using only a single microphone. We then look at indoor localization with known pulses from the geometric echo perspective introduced previously. Echo sorting enables localization in non-convex rooms without a line-of-sight path, and localization with a single omni-directional sensor, which is impossible without echoes. A closely related problem is microphone position calibration; we show that echoes can help even without assuming that the room is known. Using echoes, we can localize arbitrary numbers of microphones at unknown locations in an unknown room using only one source at an unknown location---for example a finger snap---and get the room's geometry as a byproduct. Our study of source localization outgrew the initial form factor when we looked at source localization with spherical microphone arrays. Spherical signals appear well beyond spherical microphone arrays; for example, any signal defined on Earth's surface lives on a sphere. This resulted in the first slight departure from the main theme: We develop the theory and algorithms for sampling sparse signals on the sphere using finite rate-of-innovation principles and apply it to various signal processing problems on the sphere

    Proceedings of the 7th Sound and Music Computing Conference

    Get PDF
    Proceedings of the SMC2010 - 7th Sound and Music Computing Conference, July 21st - July 24th 2010
    corecore