245 research outputs found

    Firefly Algorithm: Recent Advances and Applications

    Full text link
    Nature-inspired metaheuristic algorithms, especially those based on swarm intelligence, have attracted much attention in the last ten years. Firefly algorithm appeared in about five years ago, its literature has expanded dramatically with diverse applications. In this paper, we will briefly review the fundamentals of firefly algorithm together with a selection of recent publications. Then, we discuss the optimality associated with balancing exploration and exploitation, which is essential for all metaheuristic algorithms. By comparing with intermittent search strategy, we conclude that metaheuristics such as firefly algorithm are better than the optimal intermittent search strategy. We also analyse algorithms and their implications for higher-dimensional optimization problems.Comment: 15 page

    A Multi-Population FA for Automatic Facial Emotion Recognition

    Get PDF
    Automatic facial emotion recognition system is popular in various domains such as health care, surveillance and human-robot interaction. In this paper we present a novel multi-population FA for automatic facial emotion recognition. The overall system is equipped with horizontal vertical neighborhood local binary patterns (hvnLBP) for feature extraction, a novel multi-population FA for feature selection and diverse classifiers for emotion recognition. First, we extract features using hvnLBP, which are robust to illumination changes, scaling and rotation variations. Then, a novel FA variant is proposed to further select most important and emotion specific features. These selected features are used as input to the classifier to further classify seven basic emotions. The proposed system is evaluated with multiple facial expression datasets and also compared with other state-of-the-art models

    A scattering and repulsive swarm intelligence algorithm for solving global optimization problems

    Get PDF
    The firefly algorithm (FA), as a metaheuristic search method, is useful for solving diverse optimization problems. However, it is challenging to use FA in tackling high dimensional optimization problems, and the random movement of FA has a high likelihood to be trapped in local optima. In this research, we propose three improved algorithms, i.e., Repulsive Firefly Algorithm (RFA), Scattering Repulsive Firefly Algorithm (SRFA), and Enhanced SRFA (ESRFA), to mitigate the premature convergence problem of the original FA model. RFA adopts a repulsive force strategy to accelerate fireflies (i.e. solutions) to move away from unpromising search regions, in order to reach global optimality in fewer iterations. SRFA employs a scattering mechanism along with the repulsive force strategy to divert weak neighbouring solutions to new search regions, in order to increase global exploration. Motivated by the survival tactics of hawk-moths, ESRFA incorporates a hovering-driven attractiveness operation, an exploration-driven evading mechanism, and a learning scheme based on the historical best experience in the neighbourhood to further enhance SRFA. Standard and CEC2014 benchmark optimization functions are used for evaluation of the proposed FA-based models. The empirical results indicate that ESRFA, SRFA and RFA significantly outperform the original FA model, a number of state-of-the-art FA variants, and other swarm-based algorithms, which include Simulated Annealing, Cuckoo Search, Particle Swarm, Bat Swarm, Dragonfly, and Ant-Lion Optimization, in diverse challenging benchmark functions

    Modified Firefly Optimization with Deep Learning based Multimodal Biometric Verification Model

    Get PDF
    Biometric security has become a main concern in the data security field. Over the years, initiatives in the biometrics field had an increasing growth rate. The multimodal biometric method with greater recognition and precision rate for smart cities remains to be a challenge. By comparison, made with the single biometric recognition, we considered the multimodal biometric recognition related to finger vein and fingerprint since it has high security, accurate recognition, and convenient sample collection. This article presents a Modified Firefly Optimization with Deep Learning based Multimodal Biometric Verification (MFFODL-MBV) model. The presented MFFODL-MBV technique performs biometric verification using multiple biometrics such as fingerprint, DNA, and microarray. In the presented MFFODL-MBV technique, EfficientNet model is employed for feature extraction. For biometric recognition, MFFO algorithm with long short-term memory (LSTM) model is applied with MFFO algorithm as hyperparameter optimizer. To ensure the improved outcomes of the MFFODL-MBV approach, a widespread experimental analysis was performed. The wide-ranging experimental analysis reported improvements in the MFFODL-MBV technique over other models

    Cuckoo search for business optimization applications

    Get PDF
    Cuckoo search has become a popular and powerful metaheuristic algorithm for global optimization. In business optimization and applications, many studies have focused on support vector machine and neural networks. In this paper, we use cuckoo search to carry out optimization tasks and compare the performance of cuckoo search with support vector machine. By testing benchmarks such as project scheduling and bankruptcy predictions, we conclude that cuckoo search can perform better than support vector machine

    Computational Optimization, Modelling and Simulation: Recent Trends and Challenges

    Get PDF
    Modelling, simulation and optimization form an integrated part of modern design practice in engineering and industry. Tremendous progress has been observed for all three components over the last few decades. However, many challenging issues remain unresolved, and the current trends tend to use nature-inspired algorithms and surrogate-based techniques for modelling and optimization. This 4th workshop on Computational Optimization, Modelling and Simulation (COMS 2013) at ICCS 2013 will further summarize the latest developments of optimization and modelling and their applications in science, engineering and industry. In this review paper, we will analyse the recent trends in modelling and optimization, and their associated challenges. We will discuss important topics for further research, including parameter-tuning, large-scale problems, and the gaps between theory and applications
    corecore