4 research outputs found

    The physics of climate variability and climate change

    Get PDF
    The climate system is a forced, dissipative, nonlinear, complex and heterogeneous system that is out of thermodynamic equilibrium. The system exhibits natural variability on many scales of motion, in time as well as space, and it is subject to various external forcings, natural as well as anthropogenic. This paper reviews the observational evidence on climate phenomena and the governing equations of planetary-scale flow, as well as presenting the key concept of a hierarchy of models as used in the climate sciences. Recent advances in the application of dynamical systems theory, on the one hand, and of nonequilibrium statistical physics, on the other, are brought together for the first time and shown to complement each other in helping understand and predict the system's behavior. These complementary points of view permit a self-consistent handling of subgrid-scale phenomena as stochastic processes, as well as a unified handling of natural climate variability and forced climate change, along with a treatment of the crucial issues of climate sensitivity, response, and predictability

    Chaos on the Vallis Model for El Niño with Fractional Operators

    No full text
    The Vallis model for El Niño is an important model describing a very interesting physical problem. The aim of this paper is to investigate and compare the models using both integer and non-integer order derivatives. We first studied the model with the local derivative by presenting for the first time the exact solution for equilibrium points, and then we presented the exact solutions with the numerical simulations. We further examined the model within the scope of fractional order derivatives. The fractional derivatives used here are the Caputo derivative and Caputo–Fabrizio type. Within the scope of fractional derivatives, we presented the existence and unique solutions of the model. We derive special solutions of both models with Caputo and Caputo–Fabrizio derivatives. Some numerical simulations are presented to compare the models. We obtained more chaotic behavior from the model with Caputo–Fabrizio derivative than other one with local and Caputo derivative. When compare the three models, we realized that, the Caputo derivative plays a role of low band filter when the Caputo–Fabrizio presents more information that were not revealed in the model with local derivative
    corecore