349 research outputs found

    On new chaotic and hyperchaotic systems: A literature survey

    Get PDF
    This paper provides a thorough survey of new chaotic and hyperchaotic systems. An analysis of the dynamic behavior of these complex systems is presented by pointing out their originality and elementary characteristics. Recently, such systems have been increasingly used in various fields such as secure communication, encryption and finance and so on. In practice, each field requires specific performances with peculiar complexity. A particular classification is then proposed in this paper based on the Lyapunov exponent, the equilibriums points and the attractor forms

    Matlab Solutions of Chaotic Fractional Order Circuits

    Get PDF

    Theoretical Analysis and Circuit Verification for Fractional-Order Chaotic Behavior in a New Hyperchaotic System

    Get PDF
    A novel nonlinear four-dimensional hyperchaotic system and its fractional-order form are presented. Some dynamical behaviors of this system are further investigated, including Poincaré mapping, parameter phase portraits, equilibrium points, bifurcations, and calculated Lyapunov exponents. A simple fourth-channel block circuit diagram is designed for generating strange attractors of this dynamical system. Specifically, a novel network module fractance is introduced to achieve fractional-order circuit diagram for hardware implementation of the fractional attractors of this nonlinear hyperchaotic system with order as low as 0.9. Observation results have been observed by using oscilloscope which demonstrate that the fractional-order nonlinear hyperchaotic attractors exist indeed in this new system

    Constructing multiwing attractors from a robust chaotic system with non-hyperbolic equilibrium points

    Get PDF
    We investigate a three-dimensional (3D) robust chaotic system which only holds two nonhyperbolic equilibrium points, and finds the complex dynamical behaviour of position modulation beyond amplitude modulation. To extend the application of this chaotic system, we initiate a novel methodology to construct multiwing chaotic attractors by modifying the position and amplitude parameters. Moreover, the signal amplitude, range and distance of the generated multiwings can be easily adjusted by using the control parameters, which enable us to enhance the potential application in chaotic cryptography and secure communication. The effectiveness of the theoretical analyses is confirmed by numerical simulations. Particularly, the multiwing attractor is physically realized by using DSP (digital signal processor) chip

    Bifurcations, Chaos, Controlling and Synchronization of Certain Nonlinear Oscillators

    Get PDF
    In this set of lectures, we review briefly some of the recent developments in the study of the chaotic dynamics of nonlinear oscillators, particularly of damped and driven type. By taking a representative set of examples such as the Duffing, Bonhoeffer-van der Pol and MLC circuit oscillators, we briefly explain the various bifurcations and chaos phenomena associated with these systems. We use numerical and analytical as well as analogue simulation methods to study these systems. Then we point out how controlling of chaotic motions can be effected by algorithmic procedures requiring minimal perturbations. Finally we briefly discuss how synchronization of identically evolving chaotic systems can be achieved and how they can be used in secure communications.Comment: 31 pages (24 figures) LaTeX. To appear Springer Lecture Notes in Physics Please Lakshmanan for figures (e-mail: [email protected]

    Stochastic resonance in chua's circuit driven by alpha-stable noise

    Get PDF
    Thesis (Master)--Izmir Institute of Technology, Electronics and Communication Engineering, Izmir, 2012Includes bibliographical references (leaves: 75-80)Text in English; Abstract: Turkish and Englishx, 80 leavesThe main aim of this thesis is to investigate the stochastic resonance (SR) in Chua's circuit driven by alpha-stable noise which has better approximation to a real-world signal than Gaussian distribution. SR is a phenomenon in which the response of a nonlinear system to a sub-threshold (weak) input signal is enhanced with the addition of an optimal amount of noise. There have been an increasing amount of applications based on SR in various fields. Almost all studies related to SR in chaotic systems assume that the noise is Gaussian, which leads researchers to investigate the cases in which the noise is non-Gaussian hence has infinite variance. In this thesis, the spectral power amplification which is used to quantify the SR has been evaluated through fractional lower order Wigner Ville distribution of the response of a system and analyzed for various parameters of alpha-stable noise. The results provide a visible SR effect in Chua’s circuit driven by symmetric and skewed-symmetric alpha-stable noise distributions. Furthermore, a series of simulations reveal that the mean residence time that is the average time spent by the trajectory in an attractor can vary depending on different alpha-stable noise parameters

    Symmetry in Chaotic Systems and Circuits

    Get PDF
    Symmetry can play an important role in the field of nonlinear systems and especially in the design of nonlinear circuits that produce chaos. Therefore, this Special Issue, titled “Symmetry in Chaotic Systems and Circuits”, presents the latest scientific advances in nonlinear chaotic systems and circuits that introduce various kinds of symmetries. Applications of chaotic systems and circuits with symmetries, or with a deliberate lack of symmetry, are also presented in this Special Issue. The volume contains 14 published papers from authors around the world. This reflects the high impact of this Special Issue
    • …
    corecore