1,146 research outputs found

    Supermarket Model on Graphs

    Get PDF
    We consider a variation of the supermarket model in which the servers can communicate with their neighbors and where the neighborhood relationships are described in terms of a suitable graph. Tasks with unit-exponential service time distributions arrive at each vertex as independent Poisson processes with rate Ξ»\lambda, and each task is irrevocably assigned to the shortest queue among the one it first appears and its dβˆ’1d-1 randomly selected neighbors. This model has been extensively studied when the underlying graph is a clique in which case it reduces to the well known power-of-dd scheme. In particular, results of Mitzenmacher (1996) and Vvedenskaya et al. (1996) show that as the size of the clique gets large, the occupancy process associated with the queue-lengths at the various servers converges to a deterministic limit described by an infinite system of ordinary differential equations (ODE). In this work, we consider settings where the underlying graph need not be a clique and is allowed to be suitably sparse. We show that if the minimum degree approaches infinity (however slowly) as the number of servers NN approaches infinity, and the ratio between the maximum degree and the minimum degree in each connected component approaches 1 uniformly, the occupancy process converges to the same system of ODE as the classical supermarket model. In particular, the asymptotic behavior of the occupancy process is insensitive to the precise network topology. We also study the case where the graph sequence is random, with the NN-th graph given as an Erd\H{o}s-R\'enyi random graph on NN vertices with average degree c(N)c(N). Annealed convergence of the occupancy process to the same deterministic limit is established under the condition c(N)β†’βˆžc(N)\to\infty, and under a stronger condition c(N)/ln⁑Nβ†’βˆžc(N)/\ln N\to\infty, convergence (in probability) is shown for almost every realization of the random graph.Comment: 32 page

    Nonlinear Markov Processes in Big Networks

    Full text link
    Big networks express various large-scale networks in many practical areas such as computer networks, internet of things, cloud computation, manufacturing systems, transportation networks, and healthcare systems. This paper analyzes such big networks, and applies the mean-field theory and the nonlinear Markov processes to set up a broad class of nonlinear continuous-time block-structured Markov processes, which can be applied to deal with many practical stochastic systems. Firstly, a nonlinear Markov process is derived from a large number of interacting big networks with symmetric interactions, each of which is described as a continuous-time block-structured Markov process. Secondly, some effective algorithms are given for computing the fixed points of the nonlinear Markov process by means of the UL-type RG-factorization. Finally, the Birkhoff center, the Lyapunov functions and the relative entropy are used to analyze stability or metastability of the big network, and several interesting open problems are proposed with detailed interpretation. We believe that the results given in this paper can be useful and effective in the study of big networks.Comment: 28 pages in Special Matrices; 201

    Traffic at the Edge of Chaos

    Full text link
    We use a very simple description of human driving behavior to simulate traffic. The regime of maximum vehicle flow in a closed system shows near-critical behavior, and as a result a sharp decrease of the predictability of travel time. Since Advanced Traffic Management Systems (ATMSs) tend to drive larger parts of the transportation system towards this regime of maximum flow, we argue that in consequence the traffic system as a whole will be driven closer to criticality, thus making predictions much harder. A simulation of a simplified transportation network supports our argument.Comment: Postscript version including most of the figures available from http://studguppy.tsasa.lanl.gov/research_team/. Paper has been published in Brooks RA, Maes P, Artifical Life IV: ..., MIT Press, 199
    • …
    corecore