109 research outputs found

    Steganography: a class of secure and robust algorithms

    Full text link
    This research work presents a new class of non-blind information hiding algorithms that are stego-secure and robust. They are based on some finite domains iterations having the Devaney's topological chaos property. Thanks to a complete formalization of the approach we prove security against watermark-only attacks of a large class of steganographic algorithms. Finally a complete study of robustness is given in frequency DWT and DCT domains.Comment: Published in The Computer Journal special issue about steganograph

    A Color Image Watermarking Scheme Based On QR Factorization, Logistic and Lorentz Chaotic Maps

    Get PDF
    Most of the existing color image watermarking schemes use grayscale or binary image as watermark because color image watermark has more data than grayscale or binary watermark. Therefore, it is a challenging issue to design a color image-watermarking scheme. This paper proposes a novel color image watermarking scheme to embed color image watermark into color host image. In watermarking schemes, first divide the host and watermark image into non-overlapping blocks, apply the Discrete Cosine Transformation (DCT) on each blocks of both watermark, and host image. After that QR Factorization, apply on the each blocks of watermark. In this paper, Logistic and Lorentz chaotic maps are usedfor estimating the embedding strength and location. The experimental results reveal that this watermarking scheme is robust against different image processing attacks viz. cropping, contrast adjustment and coloring

    A Digital Watermarking Approach Based on DCT Domain Combining QR Code and Chaotic Theory

    Full text link
    This paper proposes a robust watermarking approach based on Discrete Cosine Transform domain that combines Quick Response Code and chaotic system.Comment: 7 pages, 6 figure

    Robust light field watermarking by 4D wavelet transform

    Get PDF
    Unlike common 2D images, the light field representation of a scene delivers spatial and angular description which is of paramount importance for 3D reconstruction. Despite the numerous methods proposed for 2D image watermarking, such methods do not address the angular information of the light field. Hence the exploitation of such methods may cause severe destruction of the angular information. In this paper, we propose a novel method for light field watermarking with extensive consideration of the spatial and angular information. Considering the 4D innate of the light field, the proposed method incorporates 4D wavelet for the purpose of watermarking and converts the heavily-correlated channels from RGB domain to YUV. The robustness of the proposed method has been evaluated against common image processing attacks
    • …
    corecore