184 research outputs found

    Physics and Applications of Laser Diode Chaos

    Full text link
    An overview of chaos in laser diodes is provided which surveys experimental achievements in the area and explains the theory behind the phenomenon. The fundamental physics underpinning this behaviour and also the opportunities for harnessing laser diode chaos for potential applications are discussed. The availability and ease of operation of laser diodes, in a wide range of configurations, make them a convenient test-bed for exploring basic aspects of nonlinear and chaotic dynamics. It also makes them attractive for practical tasks, such as chaos-based secure communications and random number generation. Avenues for future research and development of chaotic laser diodes are also identified.Comment: Published in Nature Photonic

    Fractional-Order Sliding Mode Synchronization for Fractional-Order Chaotic Systems

    Get PDF
    Some sufficient conditions, which are valid for stability check of fractional-order nonlinear systems, are given in this paper. Based on these results, the synchronization of two fractional-order chaotic systems is investigated. A novel fractional-order sliding surface, which is composed of a synchronization error and its fractional-order integral, is introduced. The asymptotical stability of the synchronization error dynamical system can be guaranteed by the proposed fractional-order sliding mode controller. Finally, two numerical examples are given to show the feasibility of the proposed methods

    Stability analysis of chaotic generalized Lotka-Volterra system via active compound difference anti-synchronization method

    Get PDF
    This work deals with a systematic approach for the investigation of compound difference anti-synchronization (CDAS) scheme among chaotic generalized Lotka-Volterra biological systems (GLVBSs). First, an active control strategy (ACS) of nonlinear type is described which is specifically based on Lyapunov's stability analysis (LSA) and master-slave framework. In addition, the biological control law having nonlinear expression is constructed for attaining asymptotic stability pattern for the error dynamics of the discussed GLVBSs. Also, simulation results through MATLAB environment are executed for illustrating the efficacy and correctness of considered CDAS approach. Remarkably, our attained analytical outcomes have been in outstanding conformity with the numerical outcomes. The investigated CDAS strategy has numerous significant applications to the fields of encryption and secure communication

    Symmetry in Chaotic Systems and Circuits

    Get PDF
    Symmetry can play an important role in the field of nonlinear systems and especially in the design of nonlinear circuits that produce chaos. Therefore, this Special Issue, titled “Symmetry in Chaotic Systems and Circuits”, presents the latest scientific advances in nonlinear chaotic systems and circuits that introduce various kinds of symmetries. Applications of chaotic systems and circuits with symmetries, or with a deliberate lack of symmetry, are also presented in this Special Issue. The volume contains 14 published papers from authors around the world. This reflects the high impact of this Special Issue

    Synchronization of chaotic systems by using occasional coupling

    Get PDF
    Ankara : The Department of Electrical and Electronics Engineering and Institute of Engineering and Sciences, Bilkent Univ., 1997.Thesis (Master's) -- Bilkent University, 1997.Includes bibliographical references leaves 84-88.Nonlinear and chaotic systems are difficult to control due to their unstable and unpredictable nature. Although, much work has been done in this area, synchronization of chaotic systems still remains a worthwhile endeavor. In this thesis, a method to synchronize systems, inherently operating in a chaotic mode, by using occasional coupling is presented. We assume that a masterslave synchronizing scheme is available. This approach consists of coupling and uncoupling the drive and response systems during some alternated intervals. It is then shown how this synchronization method can be used to transmit information on a chaotic carrier. The applicability of this method will be illustrated using Lorenz system as the chaotic oscillator.Feki, MoezM.S

    The Design and Its Application in Secure Communication and Image Encryption of a New Lorenz-Like System with Varying Parameter

    Get PDF
    A new Lorenz-like chaotic system with varying parameter is proposed by adding a state feedback function. The structure of the new designed system is simple and has more complex dynamic behaviors. The chaos behavior of the new system is studied by theoretical analysis and numerical simulation. And the bifurcation diagram shows a chaos-cycle-chaos evolution when the new parameter changes. Then a new synchronization scheme by a single state variable drive is given based on the new system and a chaotic parameter modulation digital secure communication system is also constructed. The results of simulation demonstrate that the new proposed system could be well applied in secure communication. Otherwise, based on the new system, the encryption and decryption of image could be achieved also

    Impulsive Control and Synchronization of Chaos-Generating-Systems with Applications to Secure Communication

    Get PDF
    When two or more chaotic systems are coupled, they may exhibit synchronized chaotic oscillations. The synchronization of chaos is usually understood as the regime of chaotic oscillations in which the corresponding variables or coupled systems are equal to each other. This kind of synchronized chaos is most frequently observed in systems specifically designed to be able to produce this behaviour. In this thesis, one particular type of synchronization, called impulsive synchronization, is investigated and applied to low dimensional chaotic, hyperchaotic and spatiotemporal chaotic systems. This synchronization technique requires driving one chaotic system, called response system, by samples of the state variables of the other chaotic system, called drive system, at discrete moments. Equi-Lagrange stability and equi-attractivity in the large property of the synchronization error become our major concerns when discussing the dynamics of synchronization to guarantee the convergence of the error dynamics to zero. Sufficient conditions for equi-Lagrange stability and equi-attractivity in the large are obtained for the different types of chaos-generating systems used. The issue of robustness of synchronized chaotic oscillations with respect to parameter variations and time delay, is also addressed and investigated when dealing with impulsive synchronization of low dimensional chaotic and hyperchaotic systems. Due to the fact that it is impossible to design two identical chaotic systems and that transmission and sampling delays in impulsive synchronization are inevitable, robustness becomes a fundamental issue in the models considered. Therefore it is established, in this thesis, that under relatively large parameter perturbations and bounded delay, impulsive synchronization still shows very desired behaviour. In fact, criteria for robustness of this particular type of synchronization are derived for both cases, especially in the case of time delay, where sufficient conditions for the synchronization error to be equi-attractivity in the large, are derived and an upper bound on the delay terms is also obtained in terms of the other parameters of the systems involved. The theoretical results, described above, regarding impulsive synchronization, are reconfirmed numerically. This is done by analyzing the Lyapunov exponents of the error dynamics and by showing the simulations of the different models discussed in each case. The application of the theory of synchronization, in general, and impulsive synchronization, in particular, to communication security, is also presented in this thesis. A new impulsive cryptosystem, called induced-message cryptosystem, is proposed and its properties are investigated. It was established that this cryptosystem does not require the transmission of the encrypted signal but instead the impulses will carry the information needed for synchronization and for retrieving the message signal. Thus the security of transmission is increased and the time-frame congestion problem, discussed in the literature, is also solved. Several other impulsive cryptosystems are also proposed to accommodate more solutions to several security issues and to illustrate the different properties of impulsive synchronization. Finally, extending the applications of impulsive synchronization to employ spatiotemporal chaotic systems, generated by partial differential equations, is addressed. Several possible models implementing this approach are suggested in this thesis and few questions are raised towards possible future research work in this area

    Analysis and synthesis of self-synchronizing chaotic systems

    Get PDF
    Includes bibliographical references (p. 225-228).Supported by the U.S. Air Force Office of Scientific Research. AFOSR-91-0034-C Supported by the U.S. Navy Office of Naval Research. N00014-91-C-0125 N00014-93-1-0686 Supported by Lockheed Sanders, Inc.Kevin M. Cuomo
    • …
    corecore