170 research outputs found

    Chaos in neural networks with a nonmonotonic transfer function

    Full text link
    Time evolution of diluted neural networks with a nonmonotonic transfer function is analitically described by flow equations for macroscopic variables. The macroscopic dynamics shows a rich variety of behaviours: fixed-point, periodicity and chaos. We examine in detail the structure of the strange attractor and in particular we study the main features of the stable and unstable manifolds, the hyperbolicity of the attractor and the existence of homoclinic intersections. We also discuss the problem of the robustness of the chaos and we prove that in the present model chaotic behaviour is fragile (chaotic regions are densely intercalated with periodicity windows), according to a recently discussed conjecture. Finally we perform an analysis of the microscopic behaviour and in particular we examine the occurrence of damage spreading by studying the time evolution of two almost identical initial configurations. We show that for any choice of the parameters the two initial states remain microscopically distinct.Comment: 12 pages, 11 figures. Accepted for publication in Physical Review E. Originally submitted to the neuro-sys archive which was never publicly announced (was 9905001

    Multi-agent decision-making dynamics inspired by honeybees

    Full text link
    When choosing between candidate nest sites, a honeybee swarm reliably chooses the most valuable site and even when faced with the choice between near-equal value sites, it makes highly efficient decisions. Value-sensitive decision-making is enabled by a distributed social effort among the honeybees, and it leads to decision-making dynamics of the swarm that are remarkably robust to perturbation and adaptive to change. To explore and generalize these features to other networks, we design distributed multi-agent network dynamics that exhibit a pitchfork bifurcation, ubiquitous in biological models of decision-making. Using tools of nonlinear dynamics we show how the designed agent-based dynamics recover the high performing value-sensitive decision-making of the honeybees and rigorously connect investigation of mechanisms of animal group decision-making to systematic, bio-inspired control of multi-agent network systems. We further present a distributed adaptive bifurcation control law and prove how it enhances the network decision-making performance beyond that observed in swarms

    Basin stability in delayed dynamics

    Get PDF
    Acknowledgements S.L. was supported by the China Scholarship Council (CSC) scholarship (Grant No. 501100004543). W.L. was supported by the National Natural Science Foundation (NNSF) of China (Grants No. 61273014 and No. 11322111).Peer reviewedPublisher PD

    A novel chaotic system and its topological horseshoe

    Get PDF
    Based on the construction pattern of Chen, Liu and Qi chaotic systems, a new threedimensional (3D) chaotic system is proposed by developing Lorenz chaotic system. It’s found that when parameter e varies, the Lyapunov exponent spectrum keeps invariable, and the signal amplitude can be controlled by adjusting e. Moreover, the horseshoe chaos in this system is investigated based on the topological horseshoe theory
    • …
    corecore