45 research outputs found

    Study of information transfer optimization for communication satellites

    Get PDF
    The results are presented of a study of source coding, modulation/channel coding, and systems techniques for application to teleconferencing over high data rate digital communication satellite links. Simultaneous transmission of video, voice, data, and/or graphics is possible in various teleconferencing modes and one-way, two-way, and broadcast modes are considered. A satellite channel model including filters, limiter, a TWT, detectors, and an optimized equalizer is treated in detail. A complete analysis is presented for one set of system assumptions which exclude nonlinear gain and phase distortion in the TWT. Modulation, demodulation, and channel coding are considered, based on an additive white Gaussian noise channel model which is an idealization of an equalized channel. Source coding with emphasis on video data compression is reviewed, and the experimental facility utilized to test promising techniques is fully described

    Achieving fault tolerance via robust partitioning and N-Modular Redundancy

    Get PDF
    Thesis (S.M.)--Massachusetts Institute of Technology, Dept. of Aeronautics and Astronautics, 2007.Includes bibliographical references (p. 165-169).This thesis describes the design and performance results for the P-NMR fault tolerant avionics system architecture being developed at Draper Laboratory. The two key principles of the architecture are robust software partitioning (P), as defined by the ARINC 653 open standard, and N-Modular Redundancy (NMR). The P-NMR architecture uses cross channel data exchange and voting to implement fault detection, isolation and recovery (FDIR). The FDIR function is implemented in software that executes on commercial-off-the-shelf (COTS) hardware components that are also based on open standards. The FDIR function and the user applications execute on the same processor. The robust partitioning is provided by a COTS real-time operating system that complies with the ARINC 653 standard. A Triple Modular Redundant (TMR) prototype was developed and various performance metrics were collected. Evaluation of the TMR prototype indicates that the ARINC 653 standard is compatible with an NMR and FDIR architecture. Application partitions can be considered software fault containment regions which enhance the overall integrity of the system. The P-NMR performance metrics were compared with a previous Draper Laboratory design called the Fault Tolerant Parallel Processor (FTPP). This design did not make use of robust partitioning and it used proprietary hardware for implementing certain FDIR functions. The comparison demonstrated that the P-NMR system prototype could perform at an acceptable level and that the development of the system should continue. This research was done in the context of developing cost effective avionics systems for space exploration vehicles such as those being developed for NASA's Constellation program.by Brendan Anthony O'Connell.S.M

    Uplink multiple access techniques for satellite communication systems

    Get PDF
    Thesis (M.S.)--Massachusetts Institute of Technology, Dept. of Electrical Engineering and Computer Science, 1998.Includes bibliographical references (leaves 90-92).by Christopher J. Karpinsky.M.S

    Advanced Modulation and Coding Technology Conference

    Get PDF
    The objectives, approach, and status of all current LeRC-sponsored industry contracts and university grants are presented. The following topics are covered: (1) the LeRC Space Communications Program, and Advanced Modulation and Coding Projects; (2) the status of four contracts for development of proof-of-concept modems; (3) modulation and coding work done under three university grants, two small business innovation research contracts, and two demonstration model hardware development contracts; and (4) technology needs and opportunities for future missions

    Service Delivery Utilizing Wireless Technology Within The Air Traffic Control Communication And Navigation Domain To Improve Positioning Awareness

    Get PDF
    Current air traffic levels around the world have pushed the enterprise architecture deployed to support air traffic management to the breaking point. Technology limitations prevent expansion of the current solutions to handle rising utilization levels without adopting radically different information delivery approaches. Meanwhile, an architectural transition would present the opportunity to support business and safety requirements that are not currently addressable. The purpose of this research paper is to create a framework for more effectively sharing positioning information utilizing improved air traffic control navigation and communication systems

    Mobile Ad Hoc Networks

    Get PDF
    Guiding readers through the basics of these rapidly emerging networks to more advanced concepts and future expectations, Mobile Ad hoc Networks: Current Status and Future Trends identifies and examines the most pressing research issues in Mobile Ad hoc Networks (MANETs). Containing the contributions of leading researchers, industry professionals, and academics, this forward-looking reference provides an authoritative perspective of the state of the art in MANETs. The book includes surveys of recent publications that investigate key areas of interest such as limited resources and the mobility of mobile nodes. It considers routing, multicast, energy, security, channel assignment, and ensuring quality of service. Also suitable as a text for graduate students, the book is organized into three sections: Fundamentals of MANET Modeling and Simulation—Describes how MANETs operate and perform through simulations and models Communication Protocols of MANETs—Presents cutting-edge research on key issues, including MAC layer issues and routing in high mobility Future Networks Inspired By MANETs—Tackles open research issues and emerging trends Illustrating the role MANETs are likely to play in future networks, this book supplies the foundation and insight you will need to make your own contributions to the field. It includes coverage of routing protocols, modeling and simulations tools, intelligent optimization techniques to multicriteria routing, security issues in FHAMIPv6, connecting moving smart objects to the Internet, underwater sensor networks, wireless mesh network architecture and protocols, adaptive routing provision using Bayesian inference, and adaptive flow control in transport layer using genetic algorithms

    Exploring Wireless Data Center Networks: Can They Reduce Energy Consumption While Providing Secure Connections?

    Get PDF
    Data centers have become the digital backbone of the modern world. To support the growing demands on bandwidth, Data Centers consume an increasing amount of power. A significant portion of that power is consumed by information technology (IT) equipment, including servers and networking components. Additionally, the complex cabling in traditional data centers poses design and maintenance challenges and increases the energy cost of the cooling infrastructure by obstructing the flow of chilled air. Hence, to reduce the power consumption of the data centers, we proposed a wireless server-to-server data center network architecture using millimeter-wave links to eliminate the need for power-hungry switching fabric of traditional fat-tree-based data center networks. The server-to-server wireless data center network (S2S-WiDCN) architecture requires Line-of-Sight (LoS) between servers to establish direct communication links. However, in the presence of interference from internal or external sources, or an obstruction, such as an IT technician, the LoS may be blocked. To address this issue, we also propose a novel obstruction-aware adaptive routing algorithm for S2S-WiDCN. S2S-WiDCN can reduce the power consumption of the data center network portion while not affecting the power consumption of the servers in the data center, which contributes significantly towards the total power consumption of the data center. Moreover, servers in data centers are almost always underutilized due to over-provisioning, which contributes heavily toward the high-power consumption of the data centers. To address the high power consumption of the servers, we proposed a network-aware bandwidth-constrained server consolidation algorithm called Network-Aware Server Consolidation (NASCon) for wireless data centers that can reduce the power consumption up to 37% while improving the network performance. However, due to the arrival of new tasks and the completion of existing tasks, the consolidated utilization profile of servers change, which may have an adverse effect on overall power consumption over time. To overcome this, NASCon algorithm needs to be executed periodically. We have proposed a mathematical model to estimate the optimal inter-consolidation time, which can be used by the data center resource management unit for scheduling NASCon consolidation operation in real-time and leverage the benefits of server consolidation. However, in any data center environment ensuring security is one of the highest design priorities. Hence, for S2S-WiDCN to become a practical and viable solution for data center network design, the security of the network has to be ensured. S2S-WiDCN data center can be vulnerable to a variety of different attacks as it uses wireless links over an unguided channel for communication. As being a wireless system, the network has to be secured against common threats associated with any wireless networks such as eavesdropping attack, denial of services attack, and jamming attack. In parallel, other security threats such as the attack on the control plane, side-channel attack through traffic analysis are also possible. We have done an extensive study to elaborate the scope of these attacks as well as explore probable solutions against these issues. We also proposed viable solutions for the attack against eavesdropping, denial of services, jamming, and control-plane attack. To address the traffic analysis attack, we proposed a simulated annealing-based random routing mechanism which can be adopted instead of default routing in the wireless data center

    Multiresolution image models and estimation techniques

    Get PDF

    Cooperative control of relay based cellular networks

    Get PDF
    PhDThe increasing popularity of wireless communications and the higher data requirements of new types of service lead to higher demands on wireless networks. Relay based cellular networks have been seen as an effective way to meet users’ increased data rate requirements while still retaining the benefits of a cellular structure. However, maximizing the probability of providing service and spectrum efficiency are still major challenges for network operators and engineers because of the heterogeneous traffic demands, hard-to-predict user movements and complex traffic models. In a mobile network, load balancing is recognised as an efficient way to increase the utilization of limited frequency spectrum at reasonable costs. Cooperative control based on geographic load balancing is employed to provide flexibility for relay based cellular networks and to respond to changes in the environment. According to the potential capability of existing antenna systems, adaptive radio frequency domain control in the physical layer is explored to provide coverage at the right place at the right time. This thesis proposes several effective and efficient approaches to improve spectrum efficiency using network wide optimization to coordinate the coverage offered by different network components according to the antenna models and relay station capability. The approaches include tilting of antenna sectors, changing the power of omni-directional antennas, and changing the assignment of relay stations to different base stations. Experiments show that the proposed approaches offer significant improvements and robustness in heterogeneous traffic scenarios and when the propagation environment changes. The issue of predicting the consequence of cooperative decisions regarding antenna configurations when applied in a realistic environment is described, and a coverage prediction model is proposed. The consequences of applying changes to the antenna configuration on handovers are analysed in detail. The performance evaluations are based on a system level simulator in the context of Mobile WiMAX technology, but the concepts apply more generally

    Mobile Ad Hoc Networks

    Get PDF
    Guiding readers through the basics of these rapidly emerging networks to more advanced concepts and future expectations, Mobile Ad hoc Networks: Current Status and Future Trends identifies and examines the most pressing research issues in Mobile Ad hoc Networks (MANETs). Containing the contributions of leading researchers, industry professionals, and academics, this forward-looking reference provides an authoritative perspective of the state of the art in MANETs. The book includes surveys of recent publications that investigate key areas of interest such as limited resources and the mobility of mobile nodes. It considers routing, multicast, energy, security, channel assignment, and ensuring quality of service. Also suitable as a text for graduate students, the book is organized into three sections: Fundamentals of MANET Modeling and Simulation—Describes how MANETs operate and perform through simulations and models Communication Protocols of MANETs—Presents cutting-edge research on key issues, including MAC layer issues and routing in high mobility Future Networks Inspired By MANETs—Tackles open research issues and emerging trends Illustrating the role MANETs are likely to play in future networks, this book supplies the foundation and insight you will need to make your own contributions to the field. It includes coverage of routing protocols, modeling and simulations tools, intelligent optimization techniques to multicriteria routing, security issues in FHAMIPv6, connecting moving smart objects to the Internet, underwater sensor networks, wireless mesh network architecture and protocols, adaptive routing provision using Bayesian inference, and adaptive flow control in transport layer using genetic algorithms
    corecore