421 research outputs found

    Performance Evaluation of Low Density Spreading Multiple Access

    Get PDF
    In this paper, we evaluate the performance of Multicarrier-Low Density Spreading Multiple Access (MC-LDSMA) as a multiple access technique for mobile communication systems. The MC-LDSMA technique is compared with current multiple access techniques, OFDMA and SC-FDMA. The performance is evaluated in terms of cubic metric, block error rate, spectral efficiency and fairness. The aim is to investigate the expected gains of using MC-LDSMA in the uplink for next generation cellular systems. The simulation results of the link and system-level performance evaluation show that MC-LDSMA has significant performance improvements over SC-FDMA and OFDMA. It is shown that using MC-LDSMA can considerably reduce the required transmission power and increase the spectral efficiency and fairness among the users

    Simplified Multiuser Detection for SCMA with Sum-Product Algorithm

    Full text link
    Sparse code multiple access (SCMA) is a novel non-orthogonal multiple access technique, which fully exploits the shaping gain of multi-dimensional codewords. However, the lack of simplified multiuser detection algorithm prevents further implementation due to the inherently high computation complexity. In this paper, general SCMA detector algorithms based on Sum-product algorithm are elaborated. Then two improved algorithms are proposed, which simplify the detection structure and curtail exponent operations quantitatively in logarithm domain. Furthermore, to analyze these detection algorithms fairly, we derive theoretical expression of the average mutual information (AMI) of SCMA (SCMA-AMI), and employ a statistical method to calculate SCMA-AMI based specific detection algorithm. Simulation results show that the performance is almost as well as the based message passing algorithm in terms of both BER and AMI while the complexity is significantly decreased, compared to the traditional Max-Log approximation method

    A Multi-Service Oriented Multiple-Access Scheme for Next-Generation Mobile Networks

    Full text link
    One of the key requirements for fifth-generation (5G) cellular networks is their ability to handle densely connected devices with different quality of service (QoS) requirements. In this article, we present multi-service oriented multiple access (MOMA), an integrated access scheme for massive connections with diverse QoS profiles and/or traffic patterns originating from both handheld devices and machine-to-machine (M2M) transmissions. MOMA is based on a) stablishing separate classes of users based on relevant criteria that go beyond the simple handheld/M2M split, b) class dependent hierarchical spreading of the data signal and c) a mix of multiuser and single-user detection schemes at the receiver. Practical implementations of the MOMA principle are provided for base stations (BSs) that are equipped with a large number of antenna elements. Finally, it is shown that such a massive-multiple-input-multiple-output (MIMO) scenario enables the achievement of all the benefits of MOMA even with a simple receiver structure that allows to concentrate the receiver complexity where effectively needed.Comment: 6 pages, 3 figures, accepted to the European Conference on Networks and Communications (EuCNC 2016
    • …
    corecore